The Limbic Brain

Thanks for visiting conspiracy4u.com



The structures and interacting areas of the limbic system are involved in motivation, emotion, learning, and memory.



The limbic system is where the subcortical structures meet the cerebral cortex.

The limbic system operates by influencing the endocrine system and the autonomic nervous system. It is highly interconnected with the nucleus accumbens, which plays a role in sexual arousal and the "high" derived from certain recreational drugs.



These responses are heavily modulated by dopaminergic projections from the limbic system. In 1954, Olds and Milner found that rats with metal electrodes implanted into their nucleus accumbens, as well as their septal nuclei, repeatedly pressed a lever activating this region, and did so in preference to eating and drinking, eventually dying of exhaustion.

source
Posts
Add Post🔒
Sources

Click the content blocks to expand more
excerpts from the source.

[1] Meet the Parasites That Control Human Brains - The Crux
http://blogs.discovermagazine.com/crux/2015/10/29/parasite-human-brain-control/
If you’re hiking in the wilderness, stay away from warm, stagnant bodies of fresh water, no matter how thirsty you are. These inviting little ponds often play host to Naegleria fowleri, an amoeba species with a taste for human brain tissue… Although N. fowleri infections are rare in the extreme — worldwide historical totals number only in the hundreds — they’re almost always fatal, and tricky to catch and treat before they spiral out of control. Even so, you’d be wise to avoid warm pools of still water, lest you end up with an uninvited guest on the brain… We’ve all been warned to stay clear of wild cats and dogs, and never to bother animals we find wandering the streets of a city. Friendly as they might look, they could easily be carrying the deadly rabies virus, which doesn’t always cause the telltale mouth-foaming — though it does alter its victims’ brain functions in profound ways… If the infection goes untreated, rabies patients fall deeper into confusion and hallucination, lashing out at imagined threats and hapless bystanders. They lose their ability to sleep, sweat profusely, and finally fall into a paralyzed stupor as their brain function slips into chaos. A few days later, as the paralysis reaches their hearts and lungs, they fall into a coma and die… In the villages of sub-Saharan Africa and the wilds of the Amazon, the tiniest insect can bring a sleep that leads to death. The tsetse fly loves the taste of human blood, and it often carries a parasite known as Trypanosoma, whose tastes run more toward human brains… Although a cure for trypanosomiasis exists, victims’ friends and families often fail to catch the disease early enough, and for a very simple reason: The sheer range and unpredictability of the infection’s symptoms makes it extremely hard to recognize. If you had a friend who suddenly started waking at odd hours and eating less, would your first thought be, “He probably has a protozoan invading his brain?” No, you’d think, “He’s probably depressed,” which is exactly what the friends and families of most Trypanosoma hosts think — until it’s too late… Scientific fact, as so often happens, is stranger than fiction when it comes to these parasites. From worms that devour brain cells to viruses that bring on crippling paranoia, these creatures are every bit as ghoulish as those in any fireside ghost story… “The brain is a ‘privileged site’ for many parasites,” Webster says. “And that really challenges the concept of free will — after all, is it us or our parasites who ‘decide’ our behavior?” …

[2] BrainMind.com
http://brainmind.com/BrainLecture4.html
The schism between the rational and the emotional is real, and is due to the raw energy of emotion having it's source in the nuclei of the ancient limbic lobe -- a series of structures which first make their phylogenetic appearance over a hundred million years before humans walked upon this earth and which continue to control and direct human behavior… The hypothalamus could be considered the most "primitive" aspect of the limbic system, though in fact the functioning of this sexually dimorphic structure is exceedingly complex. The hypothalamus regulates internal homeostasis including the experience of hunger and thirst, can trigger rudimentary sexual behaviors or generate feelings of extreme rage or pleasure. In conjunction with the pituitary the hypothalamus is a major manufacturer/secretor of hormones and other bodily humors, including those involved in the stress response and feelings of depression… The amygdala has been implicated in the generation of the most rudimentary and the most profound of human emotions, including fear, sexual desire, rage, religious ecstasy, or at a more basic level, determining if something might be good to eat. The amygdala is implicated in the seeking of loving attachments and the formation of long term emotional memories. It contains neurons which become activated in response to the human face, and which become activated in response to the direction of someone else's gaze. The amygdala also acts directly on the hypothalamus via the stria terminalis, medial forebrain bundle, and amygdalafugal pathways, and in this manner can control hypothalamic impulses. The amygdala is also directly connected to the hippocampus, with which it interacts in regard to memory… Hence, it is thus rather clear than the ability to sexually reproduce is dependent on the functional integrity of the hypothalamus. In fact, it is via the hypothalamus acting on the pituitary, that gonadotropins come to be released. Gonadotropins control the production and/or release of gametes; i.e. ova and sperm… Specifically, the hypothalamic neurons secrete gonadotropin-releasing hormone, which acts on the anterior lobe of the pituitary which secretes gonadotropins. However, given that in females, this is a cyclic event, whereas in males sperms are constantly reproduced, is further evidence of the sexual dimorphism of the hypothalamus… Specifically, with ventromedial lesions, animals not only eat more, but the intervals between meals becomes shorter such that they eat more meals. Thus they begin to gain weight. In part this is also due to changes in the sympathetic nervous system which increases vagal activity, thus signaling the need for more food. As noted, the ST is bidirectional… Overall, it appears that the lateral hypothalamus is involved in the intitation of eating and acts to maintain a lower weight limit such that when the limit is reached the organism is stimulated to eat. Conversely, the medial regions seems to be involved in setting a higher weight limit such that when these levels are approached it triggers the cessation of eating… It is possible, however, that medial hypothalamic activity may also lead to a state of quiescence such that the organism is motivated to simply cease to respond or to behave. In some instances this quiescent state may be physiologically neutral, whereas in other situations medial hypothalamic activity may be highly aversive. Quiescence is also associated with parasympathetic activity which is mediated by the medial area… When electrically stimulated, the hypothalamus responds by triggering two seemly oppositional feeling states, i.e. pleasure and unpleasure/aversion. The generation of these emotional reactions in turn influences the organism to respond so as to increase or decrease what is being experienced… The hypothalamus, via it's rich interconnections with other limbic regions including the neocortex and frontal lobes, it able to mobilize and motivate the organism to either cease or continue to behave. Nevertheless, at the level of the hypothalamus, the emotional states elicited are very primitive, diffuse, undirected and unrefined… Nevertheless, like "sham mirth", rage reactions elicited in response to direct electrical activation of the hypothalamus immediately and completely dissipate when the stimulation is removed. As such, these outbursts have been referred to as "sham rage"… These events in turn appear to be under the modulating influences of norepinephrine. That is, as stress increases, NE levels decrease, which triggers the activation of the HPA axis. As is well known, low levels of NE are associated with depression… Biologically the hypothalamus serves the body tissues by attempting to maintain internal homeostasis and by providing for the immediate discharge of tenions in an almost reflexive manner. Hence, as based on studies of lateral and medial hypothalamic functioning, it appears to act reflexively, in an almost on/off manner so as to seek or maintain the experience of pleasure and escape or avoid unpleasant, noxious conditions… Emotions elicited by the hypothalamus are largely undirected, short-lived, being triggered reflexively and without concern or understanding regarding consequences; that is, unless chronically stressed or aroused. Nevertheless, direct contact with the real world is quite limited and almost entirely indirect as the hypothalamus is largely concerned with the internal environment of the organism. Although it receives and responds to light, it cannot "see." It has no sense of morals, danger, values, logic, etc., and cannot feel or express love or hate. Although quite powerful, hypothalamic emotions are largely undifferentiated, consisting of feelings such as pleasure, unpleasure, aversion, rage, hunger, thirst, etc… However, this system is also interactional, especially in regard to sexual activity, fear, anger, hunger, and stress. For example, the hypothalamus can stimulate the amygdala which may then survey the environment so that internal needs may be met, and/or they may act in concert regarding sexual behavior, the stress response, and so on… In general, whereas the medial amygdala is highly involved in motor, olfactory and sexual functioning, the lateral division is intimately involved in all aspects of emotional activity. Hence, it's rich interconnections with the lateral and medial hypothalamus, and the neocortex and those brainstem centers controlling the visceral aspects of affective-motor behavior… The lateral amygdala is highly important in analyzing information received and transferring information back to the neocortex so that further elaboration may be carried out at the neocortical level. It is through the lateral division that emotional meaning and significance can be assigned to as well as extracted from that which is experienced… The amygdala, overall, maintains a functionally interdependent relationship with the hypothalamus. It is able to modulate and even control rudimentary emotional forces governed by the hypothalamic nucleus. However, it also acts as the behest of hypothalamically induced drives. For example, if certain nutritional requirements need to be meet, the hypothalamus signals the amygdala which then surveys the external enviornment for something good to eat or drink… Once a stimulus of potential interest is detected, the amygdala then acts to analyze its emotional-motivational importance and will act to alert other nuclei such as the hypothalamus, brainstem, and striatum, so that appropriate action may take place… Charles Whitman was born on June 24, 1941 and even before entering grade school had shown exceptional intellectual promise, was well liked by neighbors and had already shown some mastery of the piano, which he "loved to play." At the age of six he was administered the Stanford Binet tests of intellectual ability and obtained an IQ of 138; thus scoring at the 99.9% rank. He also became enamored by guns; his father being described as a gun fanatic. According to his father, "Charlie could plug a squirrel in the eye by the time he was sixteen." However, Charlie loved animals, was somewhat religiously oriented as a child, was very athlectic, was described as "handsome" and "fun" and "high spirited" and was in many respects the "all American boy." He became an Eagle Scout at age 12, and receiving national recognition as being the youngest Eagle Scout in the world. Within 15 months he had earned 21 merit badges. While in high school he continued these activites, also pitching for the baseball team and managing the football team. After high school he joined the Marines and was described as "the kind of guy you would want around if you went into combat." It was while in the Marines that he got married, and it was during this period that began to show the first subtle signs that something might be amiss… Incessantly he began to write and leave himself notes, ranging from the mundane, to the tremendous love he felt for his wife. "Received a call from Kathy... it was fabulous, she sounds so wonderful. I love her so much... I will love her to the day I die. She is the best thing I have in life. My Most Precious Possession." … Increasingly, however, he was having trouble with his temper and composed notes offering self-advice as to how to control his growing temper and rage attacks. "CONTROL your anger" he wrote, "Don't let it prove you the fool. SMILE--Its contagious. DON'T be belligerent. STOP cursing. CONTROL your passion; DON'T LET IT lead YOU." … On February 4, 1964, he purchased a diary. According to Charles: "I opened this diary of my daily events as a result of the peace of mind or release of feelings that I experienced when I started making notes of my daily events...." … However, Charles also began suffering terrible headaches, and one day lost his temper in class, pulling a male student bodily from his chair and tossing him from the classroom. Apparently he felt considerable remorse. He also continued to have frequent bouts of anger and on occasion, difficulty concentrating, and was beginning to over eat--increased food consumption being associated with a disturbance of the hypothalamus. Moreover, he began having periods where he couldn't sleep for days at a time--yet another disturbance associated with the hypothalamus, a major sleep center. Charles also realized that something was wrong, and continued writing copious notes to himself, reminding himself to be nice, to control his apetitite, and especially to control temper. But his temper was getting out of control and Charles was gaining weight… A close friend, Elaine Fuess, also noticed that something was amiss. "Even when he looked perfectly normal, he gave you the feeling of trying to control something in himself. He knew he had a temper, and he hated this in himself. He hated the idea of cruelty in himself and tried to suppress it." … Charles Whitman finally sought professional help and consulted a staff psychiatrist, at the University of Texas Health Center about his periodic and uncontrollable violent impulses. Charles was referred to Dr. Heatly. According to the report written by Dr. Heatly about his session with Whitman, a report which was distributed to the media: "This massive, muscular youth seemed to be oozing with hostility as he initiated the hour with the statement that something was happening to him and he didn't seem to be himself...." Whitman "could talk for long periods of time and develop overt hostility while talking, and then during the same narration show signs of weeping.... Past history revealed a youth who... grew up in Florida where his father was a very successful plumbing contractor... who achieved considerable wealth. He identified his father as being brutal, domineering, and extremely demanding of the other three members of the family." Whitman "married four or five years ago, and served a hitch in the Marines.... He referred to several commendable achievements during his Marine service, but also made reference to a court martial for fighting which resulted in being reduced several grades to private. In spite of this he received a scholarship to attend the University for two years and remained a Marine at the same time... He expressed himself as being very fond of his wife, but admitted that he had on two occasions assaulted his wife physically. He said he has made an intense effort to avoid losing his temper with her... His real concern is with himself at the present moment. He readily admits having overwhelming periods of hostility with a very minimum of provocation... he... also... made vivid reference to thinking about going up on the tower with a deer rifle and start shooting people. ....He was told to make an appointment for the same day next week." … Instead, Charles apparently decided to climb the tower and to begin killing people. But not before first contacting the police and asking to be arrested. As Charles had not committed a crime, the desk sergeant instead suggested that he see a psychiatrist… "I don't quite understand what it is that compels me to type this letter.... I don't really understand myself these days... Lately I have been a victim of many unusual and irrational thoughts. These thoughts constantly recur, and it requires a tremendous mental effort to concentrate. I consulted Dr. Cochrum at the University Health Center and asked him to recommend someone that I could consult with about some psychiatric disorders I felt I had.... I talked to a doctor once for about two hours and tried to convey to him my fears that I felt overcome by overwhelming violent impulses. After one session I never saw the Doctor again, and since then I have been fighting my mental turmoil alone, and seemingly to no avail. After my death I wish that an autopsy would be performed to see if there is any visible physical disorder. I have had tremendous headaches in the past and have consumed two large bottles of Excedrin in the past three months." … On August 1, 1966, one day before climbing the tower at the University of Texas, Charles Whitman paid a visit to his mother, who greeted him outside her penthouse and introduced him to the night watchman who noticed that Charles was carrying a big black attache case. According to police reports, Charles must have immediately attacked his mother after they entered the penthouse, and then brutally beat, strangled, and stabbed her to death, crushing the back of her head, smashing her hands, and stabbing her in the chest with a huge hunting knife… After brutally murdering his mother, Charles cleaned up the mess, and placed her in bed with a notepad laying across and covering up the massive wound in her chest. Charles had left a note. It read: "To Whom It May Concern: I have just taken my mother's life. I am very upset over having done it. However, I feel that if there is a heaven she is definitely there now... I am truly sorry... Let there be no doubt in your mind that I loved this woman with all my heart." … "It was after much thought that I decided to kill my wife, Kathy, tonight....I love her dearly, and she has been a fine wife to me as any man could ever hope to have. I cannot rationally pinpoint any specific reason for doing this..." … Apparently she was sleeping, and after removing the blankets to expose her nude body, he viciously stabbed her repeatedly with his huge hunting knife, leaving five gaping holes in her chest. She died instantly… Charles wrote another note which he left with the body: "I imagine it appears that I brutally killed both of my loved ones. I was only trying to do a quick thorough job... If my life insurance policy is valid please pay off my debts... donate the rest anonymously to a mental health foundation. Maybe research can prevent further tragedies of this type." … The next morning Charles Whitman climbed the University tower carrying several guns, a sawed off shotgun, and a high powered hunting rifle, and for the next 90 minutes he shot at everything that moved, killing 14, wounding 38… Indeed, they behave as if they have no understanding of what is expected of them or what others intend or are attempting to convey, even when the behavior is quite friendly and concerned. Among adults with bilateral lesions, total isolation seems to be preferred… When activated from seizures, patients may involuntarily behave in a sexual manner and even engage in what appears to be intercourse with an imaginary partner. This abnormality is one aspect of a complex of symptoms sometimes referred to as the Kluver-Bucy syndrome… Over the course of early evolutionary development, the hypothalamus reigned supreme in the control and expression of raw and reflexive emotionality, i.e., pleasure, displeasure, aversion, and rage. Largely, however, it has acted as an eye turned inward, monitoring internal homeostasis and concerned with basic needs. With the development of the amygdala, the organism was now equipped with an eye turned outward so that the external emotional features of reality could be tested and ascertained. When signalled by the hypothalamus the amygdala begins to search the sensory array for appropriate emotional-motivational stimuli until what is desired is discovered and attended to… However, with the differentiation of the amygdala, emotional functioning also became differentiated and highly refined. The amygdala hierarchically wrested control of emotion from the hypothalamus… The amygdala is primary in regard to the perception and expression of most aspects of emotionality, including fear, aggression, pleasure, happiness, sadness, etc., and in fact assigns emotional or motivational significance to that which is experienced. It can thus induce the organism to act on something seen, felt, heard, or anticipated. The integrity of the amygdala is essential in regard to the anylysis of social-emotional nuances, the organization and mobilization of the persons internal motivational status regarding these cues, as well as the mediation of higher order emotional expression and impluse control. When damaged or functionally compromised, social-emotional functioning becomes grossly disturbed… The uncus is a bulbar allocortical protrusion located in the anterior-inferior medial part of the temporal lobe, and consists of both the hippocampus and amygdala which become fused in forming this structure. That is the ventral-medial portion of the amygdala becomes fused with the head of the hippocampus, such that the uncus consists of both allocortex and mesocortex--the entorhinal cortex which shrouds the hippocampus… These findings suggest when the neocortex is highly stimulated the hippocampus, in order to monitor what is being received and processed, functions at a level much lower in order not to become overwhelmed. When the neocortex is not highly aroused, the hippocampus presumably compensates by increasing its own level of arousal so as to tune in to information that is being processed at a low level of intensity… Hence, when coupled with the evidence presented above, it appears that the hippocampus acts to possibly selectively enhance or diminish areas of neural excitation which in turn allows for differential selective attention and differential responding, as well as the storage and consolidation of information into long term memory. When damaged, the ability to shift from one set of perceptions to another, or to change behavioral patterns is disrupted and the organism becomes overwhelmed by a particular mode of input. Learning, memory, as well as attention, are greatly compromised… It appears, therefore, that the left amygdala and hippocampus are highly involved in processing and/or attending to verbal information, whereas the right amygdala/hippocampus is more involved in the learning, memory and recollection of non-verbal, visual-spatial, environmental, emotional, motivational, tactile, olfactory, and facial information. These issues and the differing roles of these nuclei in memory formation, as well as amnesia and repression will be discussed in greater detail in chapters 29, 30… Presumably this relationship is a consequence of REM as well as eating and sucking being mediated, in part, by the amygdala as well as other limbic nuclei, which are also concerned with forming motivationally significant memories. Hence, when hungry, the hypothalamus becomes aroused which activates the amygdala which is responsible for the performing environmental surveillance so as to attend, orient to, identify and approach motivationally significant stimuli and eat. However, because the infants brain is so immature and as its resources for meeting its limbic needs are quite rudimentary, under certain conditions prolonged hypothalamus induced amygdala activation results in the formation and recall of relevant memories which may be experienced as hallucinations of the desired object. That is, previously formed neural networks become activated and the infant begins to dream and hallucinate food and will then suck and smack its lips as if eating or sucking when it is awake, in REM, and there is no food present… The hypothalamus, our exceedingly ancient and primitive Id, has an eye that only sees inward. It can tell if the body needs nourishment but cannot determine what might be good to eat. It can feel thirst, but has no way of slacking this desire. The hypothalamus can only say: "I want", "I need", and can only signal pleasure and displeasure. However, being the seat of pleasure, the hypothalamus can be exceedingly gracious in rewarding the organism when its needs are met. Conversely, when its needs go unmet it can respond not only with displeasure and feelings of aversion, but with undirected fury and rage. It can cause the organism to cry out… Nevertheless, the cry does not produce the immediately desire relief or reduction in tension. There is thus a pressure on the limbic system and the organism to engage in environmental surveillance so as to meet the needs monitored by the hypothalamus… With the maturation of these two limbic nuclei the infant is increasingly able to differentiate what occurs in the external environment based on hypothalamically monitored needs and the emotional/motivational significance of that which is experienced. The infant can now orient, selectively attend, determine what brings satisfaction, and store this information in memory…

[3] Brain Structure And Function | Brain Injury | British Columbia
http://nbia.ca/brain-structure-function/
A deep furrow divides the cerebrum into two halves, known as the left and right hemispheres. And, while the two hemispheres look almost symmetrical, each side seems to function differently. The right hemisphere is considered our creative side, and the left hemisphere is considered our logical side. A bundle of axons, called the corpus callosum, connects the two hemispheres… The midbrain is located below the cerebral cortex, and above the hindbrain placing it near the center of the brain. It is comprised of the tectum, tegmentum, cerebral aqueduct, cerebral peduncles and several nuclei and fasciculi. The primary role of the midbrain is to act as a sort of relay station for our visual and auditory systems. Portions of the midbrain called the red nucleus and the substantia nigra are involved in the control of body movement, and contain a large number of dopamine-producing neurons. The degeneration of neurons in the substantia nigra is associated with Parkinson’s disease. The midbrain is the smallest region of the brain, and is located most centrally within the cranial cavity… Limbic System – the limbic system is often referred to as our “emotional brain”, or ‘childish brain’. It is found buried within the cerebrum and contains the thalamus, hypothalamus, amygdala and hippocampus… Hypothalamus – the primary role of the hypothalamus is to regulate various functions of the pituitary gland and endocrine activity, as well as somatic functions e.g.body temperature, sleep, appetite… Amygdala – the primary role of the amygdala is to be a critical processor for the senses. Connected to the hippocampus, it plays a role in emotionally laden memories and contains a huge number of opiate receptor sites that are implicated in rage, fear and sexual feelings… Hippocampus – the primary role of the hippocampus is memory forming, organizing and storing information. It is particularly important in forming new memories, and connecting emotions and senses, such as smell and sound, to memories… Pituitary Gland – the primary role of the pituitary gland is an important link between the nervous system and the endocrine system. It releases many hormones which affect growth, metabolism, sexual development and the reproduction system. It is connected to the hypothalamus and is about the size of a pea. It is located in the center of the skull, just behind the bridge of the nose… The Cerebellum – The cerebellum, or “little brain”, is similar to the cerebrum with its two hemispheres and highly folded surface. It is associated with regulation and coordination of movement, posture, balance and cardiac, respiratory and vasomotor centers… Brain Stem – The brain stem is located beneath the limbic system. It is responsible for vital life functions such as breathing, heartbeat, and blood pressure. The brain stem is made of the midbrain, pons, and medulla… Pons – The primary role of the pons is to serve as a bridge between various parts of the nervous system, including the cerebellum and cerebrum. Many important nerves that originate in the pons, such as the trigeminal nerve, responsible for feeling in the face, as well as controlling the muscles that are responsible for biting, chewing, and swallowing. It also contains the abducens nerve, which allows us to look from side to side and the vestibularcochlear nerve, which allows to hear. As part of the brainstem, a section of the lower pons stimulates and controls the intensity of breathing, while a section of the upper pons decreases the depth and frequency of breaths. The pons is also associated with the control of sleep cycles, and controls respiration and reflexes. It is located above the medulla, below the midbrain, and just in front of the cerebellum…

[4] https://academic.oup.com/cercor/article-pdf/17/12/2828/17296802/bhm011
https://academic.oup.com/cercor/article-pdf/17/12/2828/17296802/bhm011.pdf

[5] Close More Deals Using This Neuroscience-Backed Principle of Persuasio ...
https://blog.hubspot.com/sales/close-more-deals-using-this-neuroscience-backed-principle-of-persuasion
At the same time, the other stream of battlefield news may be brought to the army headquarters by scout planes. The information is dissected, scrutinized, and evaluated. Military headquarters resembles the neocortex -- a thinking part of the brain. The route to the neocortex is longer than the one to the limbic system. However, the result is a well-informed, deliberate decision… The resemblance between the brain and the army continues. At some point, the platoon commander submits the news report to the army center. Similarly, when information from the limbic system reaches the neocortex, it’s time for the brain to analyze our emotional reaction and how well it matched the situation… Notice again that the same information travels in two directions in our brain. These routes are parallel, but no matter their difference, information eventually ends up in the “rational brain.” … However, I believe we overestimate the power of emotion and oversimplify the decision making process. The fact that the emotional center in the brain reports to the thinking brain should encourage salespeople and managers to embrace its several applications… To be convinced, most people require a combination of emotion and fact-based arguments. Human brains are built to perceive and analyze information before deciding on a conclusion. Give your prospects facts, statistics, and case studies to support your emotional appeals… Driven by their impulses, a prospect might buy whatever you suggest or agree to your negotiation terms. However, if this decision actually contradict his interests, he’ll realize that shortly -- and may renege. Not only will you permanently damage the relationship and lose the sale, but you’ll miss the opportunity for a referral and generate negative word-of-mouth. In the long run, encouraging impulsive decisions won’t help you build trust or win clients’ hearts… If you want someone to act on his or her emotions, you need to intervene during a time lag between information being processed in the limbic system and the same information rushing to the thinking brain. This is a window when a rational mind is asleep while emotions are activated, and nobody is there to suppress them… While these manipulative techniques can lead to short-term gains, they’ll hurt you in the long run by generating negative word-of-mouth; cancellations and refunds; and a high churn rate… Whenever you have to make a point or negotiate a deal, use these simple yet useful recommendations. 1. Use emotional appeal to get your prospect’s attention, not convince them to buy. 2. Incorporate facts, numbers, and other logical elements into your sales pitch. 3. Do not abuse the power of emotions. You might gain temporary influence over the prospect’s mind, but these tactics will backfire once the “emotional spell” breaks…

[6] 301 Moved Permanently
https://brainblogger.com/2007/04/09/subconscious-mind-and-the-limbic-system/

[7] http://scholar.google.ca/scholar%3Fq%3DLimbic%2BBrain%2Bmanipulation%2
http://scholar.google.ca/scholar%3Fq%3DLimbic%2BBrain%2Bmanipulation%26hl%3Den%26as_sdt%3D0%26as_vis%3D1%26oi%3Dscholart

[8] http://scholar.google.ca/scholar_url%3Furl%3Dhttps://link.springer.com
http://scholar.google.ca/scholar_url%3Furl%3Dhttps://link.springer.com/article/10.1007/s00221-003-1614-2%26hl%3Den%26sa%3DX%26scisig%3DAAGBfm3qYku_lOpz0wkqDE5TNOzh8GPmIA%26nossl%3D1%26oi%3Dscholarr

[9] http://scholar.google.ca/scholar_url%3Furl%3Dhttps://www.ncbi.nlm.nih.
http://scholar.google.ca/scholar_url%3Furl%3Dhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644539/%26hl%3Den%26sa%3DX%26scisig%3DAAGBfm3ul0qLxzD_Ni-NZAnI2hkRrj3sJw%26nossl%3D1%26oi%3Dscholarr

[10] http://scholar.google.ca/scholar_url%3Furl%3Dhttp://www.academia.edu/d
http://scholar.google.ca/scholar_url%3Furl%3Dhttp://www.academia.edu/download/35570912/HuiK_HBM_2000_9_13_25.pdf%26hl%3Den%26sa%3DX%26scisig%3DAAGBfm3AvmVyVdvUEBeAZ32UqrXwt3Kzug%26nossl%3D1%26oi%3Dscholarr

[11] Structure and Function of the Brain | Boundless Psychology
https://courses.lumenlearning.com/boundless-psychology/chapter/structure-and-function-of-the-brain/
The embryonic brain: The layers of the embryonic brain. The telencephalon and diencephalon give rise to the forebrain, while the metencephalon and myelencephalon give rise to the hindbrain… The hindbrain is the well-protected central core of the brain. It includes the cerebellum, reticular formation, and brain stem, which are responsible for some of the most basic autonomic functions of life, such as breathing and movement. The brain stem contains the pons and medulla oblongata. Evolutionarily speaking, the hindbrain contains the oldest parts of the brain, which all vertebrates possess, though they may look different from species to species… The midbrain makes up part of the brain stem. It is located between the hindbrain and forebrain. All sensory and motor information that travels between the forebrain and the spinal cord passes through the midbrain, making it a relay station for the central nervous system… The hindbrain, which includes the medulla oblongata, the pons, and the cerebellum, is responsible some of the oldest and most primitive body functions. Each of these structures is described below… The pons connects the medulla oblongata with the midbrain region, and also relays signals from the forebrain to the cerebellum. It houses the control centers for respiration and inhibitory functions. The cerebellum is attached to the dorsal side of the pons… Human and shark brains: The shark brain diverged on the evolutionary tree from the human brain, but both still have the “old” structures of the hindbrain and midbrain dedicated to autonomic bodily processes… The diencephalon is the region of the embryonic vertebrate neural tube that gives rise to posterior forebrain structures. In adults, the diencephalon appears at the upper end of the brain stem, situated between the cerebrum and the brain stem. It is home to the limbic system, which is considered the seat of emotion in the human brain. The diencephalon is made up of four distinct components: the thalamus, the subthalamus, the hypothalamus, and the epithalamus… The cerebral cortex, the largest part of the mammalian brain, is the wrinkly gray outer covering of the cerebrum. While the cortex is less than 1/4″ thick, it is here that all sensation, perception, memory, association, thought, and voluntary physical actions occur. The cerebral cortex is considered the ultimate control and information-processing center in the brain… The cerebrum is composed of gray and white matter. Gray matter is the mass of all the cell bodies, dendrites, and synapses of neurons interlaced with one another, while white matter consists of the long, myelin-coated axons of those neurons connecting masses of gray matter to each other. image … The two hemispheres communicate with one another through the corpus callosum. The corpus callosum is a wide, flat bundle of neural fibers beneath the cortex that connects the left and right cerebral hemispheres and facilitates interhemispheric communication. The corpus callosum is sometimes implicated in the cause of seizures; patients with epilepsy sometimes undergo a corpus callostomy, or the removal of the corpus callosum… Lobes of the brain: The brain is divided into four lobes, each of which is associated with different types of mental processes. Clockwise from left: The frontal lobe is in blue at the front, the parietal lobe in yellow at the top, the occipital lobe in red at the back, and the temporal lobe in green on the bottom… The frontal lobe is considered to be the moral center of the brain because it is responsible for advanced decision-making processes. It also plays an important role in retaining emotional memories derived from the limbic system, and modifying those emotions to fit socially accepted norms… The temporal lobe is associated with the retention of short- and long-term memories. It processes sensory input including auditory information, language comprehension, and naming. It also creates emotional responses and controls biological drives such as aggression and sexuality… The temporal lobe contains the hippocampus, which is the memory center of the brain. The hippocampus plays a key role in the formation of emotion-laden, long-term memories based on emotional input from the amygdala. The left temporal lobe holds the primary auditory cortex, which is important for processing the semantics of speech… Broca’s and Wernicke’s areas: The locations of Broca’s and Wernicke’s areas in the brain. The Broca’s area is at the back of the frontal lobe, and the Wernicke’s area is roughly where the temporal lobe and parietal lobe meet… The parietal lobe is associated with sensory skills. It integrates different types of sensory information and is particularly useful in spatial processing and navigation. The parietal lobe plays an important role in integrating sensory information from various parts of the body, understanding numbers and their relations, and manipulating objects. Its also processes information related to the sense of touch… The limbic system is a complex set of structures found on the central underside of the cerebrum, comprising inner sections of the temporal lobes and the bottom of the frontal lobe. It combines higher mental functions and primitive emotion into a single system often referred to as the emotional nervous system. It is not only responsible for our emotional lives but also our higher mental functions, such as learning and formation of memories. The limbic system is the reason that some physical things such as eating seem so pleasurable to us, and the reason why some medical conditions, such as high blood pressure, are caused by mental stress. There are several important structures within the limbic system: the amygdala, hippocampus, thalamus, hypothalamus, basal ganglia, and cingulate gyrus. image … Due to its close proximity to the hippocampus, the amygdala is involved in the modulation of memory consolidation, particularly emotionally-laden memories. Emotional arousal following a learning event influences the strength of the subsequent memory of that event, so that greater emotional arousal following a learning event enhances a person’s retention of that memory. In fact, experiments have shown that administering stress hormones to individuals immediately after they learn something enhances their retention when they are tested two weeks later… The cingulate gyrus is located in the medial side of the brain next to the corpus callosum. There is still much to be learned about this gyrus, but it is known that its frontal part links smells and sights with pleasant memories of previous emotions. This region also participates in our emotional reaction to pain and in the regulation of aggressive behavior… The brain is constantly adapting throughout a lifetime, though sometimes over critical, genetically determined periods of time. Neuroplasticity is the brain’s ability to create new neural pathways based on new experiences. It refers to changes in neural pathways and synapses that result from changes in behavior, environmental and neural processes, and changes resulting from bodily injury. Neuroplasticity has replaced the formerly held theory that the brain is a physiologically static organ, and explores how the brain changes throughout life… Neuroplasticity occurs on a variety of levels, ranging from minute cellular changes resulting from learning to large-scale cortical remapping in response to injury. The role of neuroplasticity is widely recognized in healthy development, learning, memory, and recovery from brain damage. During most of the 20th century, the consensus among neuroscientists was that brain structure is relatively immutable after a critical period during early childhood. It is true that the brain is especially ” plastic ” during childhood’s critical period, with new neural connections forming constantly. However, recent findings show that many aspects of the brain remain plastic even into adulthood… Plasticity can be demonstrated over the course of virtually any form of learning. For one to remember an experience, the circuitry of the brain must change. Learning takes place when there is either a change in the internal structure of neurons or a heightened number of synapses between neurons. Studies conducted using rats illustrate how the brain changes in response to experience: rats who lived in more enriched environments had larger neurons, more DNA and RNA, heavier cerebral cortices, and larger synapses compared to rats who lived in sparse environments… A surprising consequence of neuroplasticity is that the brain activity associated with a given function can move to a different location; this can result from normal experience, and also occurs in the process of recovery from brain injury. In fact, neuroplasticity is the basis of goal-directed experiential therapeutic programs in rehabilitation after brain injury. For example, after a person is blinded in one eye, the part of the brain associated with processing input from that eye doesn’t simply sit idle; it takes on new functions, perhaps processing visual input from the remaining eye or doing something else entirely. This is because while certain parts of the brain have a typical function, the brain can be “rewired”—all because of plasticity… Pruning removes axons from synaptic connections that are not functionally appropriate. This process strengthens important connections and eliminates weaker ones, creating more effective neural communication. Generally, the number of neurons in the cerebral cortex increases until adolescence. Apoptosis occurs during early childhood and adolescence, after which there is a decrease in the number of synapses. Approximately 50% of neurons present at birth do not survive until adulthood. The selection of the pruned neurons follows the “use it or lose it” principle, meaning that synapses that are frequently used have strong connections, while the rarely used synapses are eliminated. image … Synaptic pruning is distinct from the regressive events seen during older age. While developmental pruning is experience-dependent, the deteriorating connections that occur with old age are not. Synaptic pruning is like carving a statue: getting the unformed stone into its best form. Once the statue is complete, the weather will begin to erode the statue, which represents the lost connections that occur with old age…

[12] Decisions and Desire
https://hbr.org/2006/01/decisions-and-desire
Think of your brain as composed of three layers, the evolutionarily oldest and simplest at the center and the most modern and complex on the outside. At the top of the spinal cord—the center of the brain—lie the most primitive structures, ones we share with reptiles and fish, which control basic survival functions like breathing and hunger. Wrapped around these is the ancient limbic system, which we share with dogs and other mammals. Containing the thalamus, amygdala, and hippocampus, it is the seat of basic emotions such as fear, aggressiveness, and contentment. It’s the part of the brain that allows your dog to seem so pleased that you’re home while your fish couldn’t care less… Experiments like these illuminate the aggressive participation of our emotion-driven animal brains in all kinds of decision making. And they’re beginning to expose the complex dance of primitive brain circuits involved in feelings of reward and aversion as we make choices. In the ultimatum game, it certainly looks as if our dog brains sometimes hijack our higher cognitive functions to drive bad or, at least, illogical decisions. But, as we shall see, our animal brains play an important part in rational decision making as well… Damasio and his colleagues have since studied over 50 patients with brain damage like Elliot’s who share this combination of emotional and decision-making defects. And researchers have found that patients with injuries to parts of the limbic system, an ancient group of brain structures important in generating emotions, also struggle with making decisions. There’s something critical to decision making in the conversation between emotion and reason in the brain, but what? … In the game, players picked cards from red and blue decks, winning and losing play money with each pick. The players were hooked up to lie-detector-like devices that measure skin conductance response, or CSR, which climbs as your stress increases and your palms sweat. Most players get a feeling that there’s something amiss with the red decks after they turn over about 50 cards, and after 30 more cards, they can explain exactly what’s wrong. But just ten cards into the game, their palms begin sweating when they reach for the red decks. Part of their brains know the red deck is a bad bet, and they begin to avoid it—even though they won’t consciously recognize the problem for another 40 cards and won’t be able to explain it until 30 cards after that. Long before they have a hunch about the red deck, a subconscious prehunch warns them away from it… The brain’s frontal lobes, so critical to decision making, don’t fully mature until after puberty. Until then, the neuronal wiring that connects the prefrontal cortex to the rest of the brain is still under construction. Meanwhile, the parts of the brain that incite impulsive behavior seem particularly primed in teenagers. For instance, Gregory Berns and colleagues at Emory University found that certain still-developing circuits in adolescents’ brains become hyperactive when the kids experience pleasurable novel stimuli. An adolescent’s brain is wired to favor immediate and surprising rewards, even when the teen knows full well that pursuing them may be a bad idea… In a sense, teenagers have yet to complete the wiring that manifests as willpower. The prefrontal cortex, it appears, is the seat of willpower—the ability to take the long-term perspective in evaluating risks and rewards. As such, this area of the brain is in close contact with the structures and circuits of the emotional animal brain that seek gratification and alert us to danger… Much of the traffic between the primitive and modern parts of our brains is devoted to this conscious calculation of risks and rewards. Though animals’ reward and aversion circuitry is a lot like ours, unlike most animals, we can look out at the horizon and contemplate what might flow from a decision to chase immediate gratification. And we can get immediate pleasure from the prospect of some future gratification… Bruce’s story would be little more than a footnote in the medical literature but for one twist: He had Parkinson’s disease, and just before his compulsions began, his neurologist had added a new drug to his regimen—pramipexole—which relieves the tremors of the disease by mimicking dopamine. When Bruce described his worrisome new passions to his neurologist, the doctor, suspecting the pramipexole might be involved, advised him to reduce his dose. Bruce stopped taking the drug altogether, and two days later, his desires—to gamble, to shop, to have sex many times a day—simply vanished. It was, he said, “like a light switch being turned off.” … Cases like Bruce’s reveal the extraordinary power of our dopamine-fueled appetite for rewards—as distinct from the rewards themselves—to ride roughshod over reason. But what about the rest of us who go about our reward-seeking business in apparently more balanced ways? We clearly do a better job of weighing trade-offs than Bruce did, but much of the same circuitry is at work—and, as such, sometimes our pursuits aren’t as rational as we think they are… As Knutson puts it, the nucleus accumbens seems to act as a gas pedal that accelerates our drive for rewards, while the relevant part of the prefrontal cortex is the steering wheel that directs reward seeking toward specific goals. When it comes to making money, having the accumbens on the gas pedal is often desirable—it motivates high performance at work among other things. But when you step on the gas, you want to be pointed in the right direction… It’s no surprise that the prospect of money or food or sex stimulates our reward circuits. But revenge? Consider Clara Harris. Her name may not ring a bell, but her case probably will. Harris is the Houston dentist who, upon encountering her husband and his receptionist-turned-mistress in a hotel parking lot in 2002, ran him down with her Mercedes. What was she thinking? According to an Associated Press report at the time of her murder conviction in 2003, Harris testified, “I didn’t know who was driving…everything seemed like a dream.” As she put it, “I wasn’t thinking anything.” … When University of Zurich researchers Dominique J.F. de Quervain, Ernst Fehr, and colleagues scanned subjects with a PET device during an ultimatum-like game, they found certain reward circuits in the brain’s striatum activated when players anticipated, and then actually punished, ill-behaved partners. What’s more, the greater the activation of the striatum, the greater the subjects’ willingness to incur costs for the opportunity to deliver punishment. At the same time, the researchers saw activation in the medial prefrontal cortex, the deliberative part of the higher brain that’s thought to weigh risks and rewards. Once again, neuroscientists seem to have caught on camera an engagement between the emotional and reasoning parts of the brain… These same brain regions—the reward-seeking striatum and the deliberative prefrontal cortex, both of which are activated by the pleasing possibility of revenge—also light up when people anticipate giving rewards to partners who cooperate. Though the players’ behaviors are opposite—bestowing a reward versus exacting punishment— their brains react in the same way in eager anticipation of a satisfying social experience… Like the brain’s reward circuits, its systems for sensing and making decisions about risks are powerful and prone to error. Often this fact confronts us directly. Many people, for instance, have a paralyzing fear of flying that’s unrelated to its true risks. All the time, people make the irrational decision to travel by car rather than fly, believing on a gut level that it’s safer, even though they know it’s not… This behavior is partly the work of the amygdala, a structure near the base of the brain. Colin Camerer, a behavioral and experimental economist at the California Institute of Technology, calls the amygdala an “internal hypochondriac,” which provides quick and dirty emotional signals in response to potential threats. It’s also been called the “fear site,” responsible for both producing fear responses and learning from experience to be afraid of certain stimuli. The amygdala responds instantaneously to all manner of perceived potential threats and pays particular attention to social cues. This leads to good and, often, very bad decisions… Look at how the amygdala influences first impressions: Brain-scanning experiments show that it activates when people see spiders, snakes, frightening expressions, faces that look untrustworthy—and faces of another race. It’s easy to see how a “that’s a threat” response to a snake could guide good decisions, particularly a million years ago out on the savanna. But a gut reaction that says “watch out” when you see a face of a different race? … On the one hand, we should be happy that our amygdalas warn us of potential dangers before our conscious brains grasp that something’s amiss. But a brain circuit that was indispensable to our ancestors, warning them away from legitimate threats like snakes, certainly contributes to an array of bad and irrational decisions today. In the case of our readiness to fear outgroups, think of the countless missed opportunities and just plain bad decisions made by good people who consciously hold no racial biases but who nonetheless have gone with an inchoate gut sense to withhold a job offer, deny a promotion, or refuse a loan because their amygdalas, for no good reason, said, “Watch out.” … The amygdala’s role in warning us about perils real and imagined seems to extend even to the threat of losing money. In Breiter’s lab, researchers monitored brain activity while volunteers watched images of roulette-like wheels, each with a spinning arrow that would come to a stop on a particular dollar amount, either a gain, a loss, or zero. It was obvious at a glance that some wheels were likely to produce dollar wins while others were clearly losers. When the losing wheels spun, subjects’ amygdalas activated even before the arrows stopped, signaling their discomfort about the losses they saw coming… Beyond the amygdala, the brain has another risk-aversion region that steers us from disagreeable stimuli. Recall in the ultimatum game that it was the anterior insula that reacted with disgust to the other player’s rotten offer; this region also activates when people think they’re about to experience pain or see something shocking. Like our reward-seeking circuitry, loss-avoidance circuits involving the amygdala and anterior insula serve us well—when they’re not driving us to overact and make bad decisions… MGH’s Breiter believes the more we learn about the brain science of motivation, the more readily it can be applied in business. “People’s decision-making and management styles probably arise from common motivational impulses in the brain,” he points out. “If a manager is hardwired to be more risk seeking, or risk avoiding, or more driven to pursue a goal than to achieve it, that’s going to affect how he manages and makes decisions.” With our increasingly clear understanding of how basic motivations affect conscious decisions, Breiter says, it should be possible to tailor incentives accordingly. A manager who shows a preference for the hunt might, for instance, be well served by incentives that increase his motivation to reach goals rather than simply chase them…

[13] The limbic action-perception cycle controlling goal-directed animal be ...
https://ieeexplore.ieee.org/document/1007491/

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2019 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions…

[14] https://mazeengineers.com/amygdala-role-in-behavior-function-and-exper
https://mazeengineers.com/amygdala-role-in-behavior-function-and-experimental-manipulation/

The rodent amygdala can be experimentally studied using behavioral, pharmacological, lesioning and genetic manipulations. The section below describes the various manipulations that can be achieved, first starting with behavioral manipulation via a maze, and next with chemical and neurobiological manipulations. The manipulations below include predator scent, pharmacologic or chemical agents that target amygdala subregion functioning, brain region lesioning of subregions of the amygdala to remove and inhibit functions connected to that subregion, and optogenetics in rodents genetically bred to have light-sensitive neurons that can be turned on and off with fiber optic light… One important note for experiments with rodent or any animals; all animals should be handled in a consistent manner according to a study design protocol so that no variations in handling are introduced as confounding factors into the experiment. The conditions including the lab and environmental conditions cannot differ between tested animals. This is what is meant by controlling all other factors in an experiment. The experimental manipulation should be the only factor that changes… Animal model experiments using a variety of genetic, chemical and lesion manipulations to the amygdala have revealed much about the function of amygdala subregions. Rodent experiments are used extensively as early-stage research for human behavior and in many cases are the staging grounds for future research in non-human primates and humans. Projections from the amygdala to cortical regions can be targeted in future research interested in translating knowledge of amygdala function into therapeutic interventions…

[15] https://medium.com/%40galynburke/child-development-post-3-of-3-when-yo
https://medium.com/%40galynburke/child-development-post-3-of-3-when-your-kids-become-capable-of-certain-tasks-and-why-1c4e28be26c6

[16] Neuralink and the Brain's Magical Future — Wait But Why
https://waitbutwhy.com/2017/04/neuralink.html
But before I can bring you in the time machine to show you what I found, we need to get in our zoom machine—because as I learned the hard way, Elon’s wizard hat plans cannot be properly understood until your head’s in the right place… The problem is that no one had any nerves. Without nerves, you can’t move, or think, or process information of any kind. So you just had to kind of exist and wait there until you died… The jellyfish’s nerve net allowed it to collect important information from the world around it—like where there were objects, predators, or food—and pass that information along, through a big game of telephone, to all parts of its body. Being able to receive and process information meant that the jellyfish could actually react to changes in its environment in order to increase the odds of life going well, rather than just floating aimlessly and hoping for the best… The flatworm figured out that you could get a lot more done if there was someone in the nervous system who was in charge of everything—a nervous system boss. The boss lived in the flatworm’s head and had a rule that all nerves in the body had to report any new information directly to him. So instead of arranging themselves in a net shape, the flatworm’s nervous system all revolved around a central highway of messenger nerves that would pass messages back and forth between the boss and everyone else: … A little while later came the arrival of mammals. For the Millennials of the Animal Kingdom, life was complicated. Yes, their hearts needed to beat and their lungs needed to breathe, but mammals were about a lot more than survival functions—they were in touch with complex feelings like love, anger, and fear… For the reptilian brain, which had only had to deal with reptiles and other simpler creatures so far, mammals were just…a lot. So a second boss developed in mammals to pair up with the reptilian brain and take care of all of these new needs—the world’s first limbic system… What appeared to be a random infant was actually the early version of the neocortex, and though he didn’t say much at first, as evolution gave rise to primates and then great apes and then early hominids, this new boss grew from a baby into a child and eventually into a teenager with his own idea of how things should be run… Over the next few million years, the new boss grew older and wiser, and his ideas kept getting better. He figured out how to not be naked. He figured out how to control fire. He learned how to make a spear… But his coolest trick was thinking. He turned each human’s head into a little world of its own, making humans the first animal that could think complex thoughts, reason through decisions, and make long-term plans… The human brain had advanced to the point where it could understand that even though the sound “rock” was not itself a rock, it could be used as a symbol of a rock—it was a sound that referred to a rock. The early human had invented language… The neocortex had turned humans into magicians. Not only had he made the human head a wondrous internal ocean of complex thoughts, his latest breakthrough had found a way to translate those thoughts into a symbolic set of sounds and send them vibrating through the air into the heads of other humans, who could then decode the sounds and absorb the embedded idea into their own internal thought oceans. The human neocortex had been thinking about things for a long time—and he finally had someone to talk about it all with… A neocortex party ensued. Neocortexes—fine—neocortices shared everything with each other—stories from their past, funny jokes they had thought of, opinions they had formed, plans for the future… But most useful was sharing what they had learned. If one human learned through trial and error that a certain type of berry led to 48 hours of your life being run by diarrhea, they could use language to share the hard-earned lesson with the rest of their tribe, like photocopying the lesson and handing it to everyone else. Tribe members would then use language to pass along that lesson to their children, and their children would pass it to their own children. Rather than the same mistake being made again and again by many different people, one person’s “stay away from that berry” wisdom could travel through space and time to protect everyone else from having their bad experience… And let’s say this knowledge advancement makes the hunting season more efficient, which gives tribe members more time to work on their weapons—which allows one extra-clever hunter a few generations later to discover a method for making lighter, denser spears that can be thrown more accurately. And just like that, every present and future hunter in the tribe hunts with a more effective spear… Language allows the best epiphanies of the very smartest people, through the generations, to accumulate into a little collective tower of tribal knowledge—a “greatest hits” of their ancestors’ best “aha!” moments. Every new generation has this knowledge tower installed in their heads as their starting point in life, leading them to new, even better discoveries that build on what their ancestors learned, as the tribe’s knowledge continues to grow bigger and wiser. Language is the difference between this: … Knowledge, when shared, becomes like a grand, collective, inter-generational collaboration. Hundreds of generations later, what started as a pro tip about a certain berry to avoid has become an intricate system of planting long rows of the stomach-friendly berry bushes and harvesting them annually. The initial stroke of genius about wildebeest migrations has turned into a system of goat domestication. The spear innovation, through hundreds of incremental tweaks over tens of thousands of years, has become the bow and arrow… Language gives a group of humans a collective intelligence far greater than individual human intelligence and allows each human to benefit from the collective intelligence as if he came up with it all himself. We think of the bow and arrow as a primitive technology, but raise Einstein in the woods with no existing knowledge and tell him to come up with the best hunting device he can, and he won’t be nearly intelligent or skilled or knowledgeable enough to invent the bow and arrow. Only a collective human effort can pull that off… Being able to speak to each other also allowed humans to form complex social structures which, along with advanced technologies like farming and animal domestication, led tribes over time to begin to settle into permanent locations and merge into organized super-tribes. When this happened, each tribe’s tower of accumulated knowledge could be shared with the larger super-tribe, forming a super-tower. Mass cooperation raised the quality of life for everyone, and by 10,000 BC, the first cities had formed… So not only did the members of a city benefit from a huge knowledge tower as a foundation, but Metcalfe’s law means that the number of conversation possibilities now skyrocketed to an unprecedented amount of variety. More conversations meant more ideas bumping up against each other, which led to many more discoveries clicking together, and the pace of innovation soared… Humans soon mastered agriculture, which freed many people up to think about all kinds of other ideas, and it wasn’t long before they stumbled upon a new, giant breakthrough: writing… Historians think humans first started writing things down about 5 – 6,000 years ago. Up until that point, the collective knowledge tower was stored only in a network of people’s memories and accessed only through livestream word-of-mouth communication. This system worked in small tribes, but with a vastly larger body of knowledge shared among a vastly larger group of people, memories alone would have had a hard time supporting it all, and most of it would have ended up lost… If language let humans send a thought from one brain to another, writing let them stick a thought onto a physical object, like a stone, where it could live forever. When people began writing on thin sheets of parchment or paper, huge fields of knowledge that would take weeks to be conveyed by word of mouth could be compressed into a book or a scroll you could hold in your hand. The human collective knowledge tower now lived in physical form, neatly organized on the shelves of city libraries and universities… These shelves became humanity’s grand instruction manual on everything. They guided humanity toward new inventions and discoveries, and those would in turn become new books on the shelves, as the grand instruction manual built upon itself. The manual taught us the intricacies of trade and currency, of shipbuilding and architecture, of medicine and astronomy. Each generation began life with a higher floor of knowledge and technology than the last, and progress continued to accelerate… That‘s Gutenberg’s thing? A bunch of stamps? I feel like I could have come up with that pretty easily. Not really clear why it took humanity 5,000 years to go from figuring out how to write to creating a bunch of manual stamps. I guess it’s not that I’m unimpressed with Gutenberg—I’m neutral on Gutenberg, he’s fine—it’s that I’m unimpressed with everyone else… Mass-produced books allowed information to spread like wildfire, and with books being made increasingly affordable, no longer was education an elite privilege—millions now had access to books, and literacy rates shot upwards. One person’s thoughts could now reach millions of people. The era of mass communication had begun… The avalanche of books allowed knowledge to transcend borders, as the world’s regional knowledge towers finally merged into one species-wide knowledge tower that stretched into the stratosphere… The better we could communicate on a mass scale, the more our species began to function like a single organism, with humanity’s collective knowledge tower as its brain and each individual human brain like a nerve or a muscle fiber in its body. With the era of mass communication upon us, the collective human organism—the Human Colossus—rose into existence… With the entire body of collective human knowledge in its brain, the Human Colossus began inventing things no human could have dreamed of inventing on their own—things that would have seemed like absurd science fiction to people only a few generations before… It turned our ox-drawn carts into speedy locomotives and our horse-and-buggies into shiny metal cars. It turned our lanterns into lightbulbs and written letters into telephone calls and factory workers into industrial machines. It sent us soaring through the skies and out into space. It redefined the meaning of “mass communication” by giving us radio and TV, opening up a world where a thought in someone’s head could be beamed instantly into the brains of a billion people… If an individual human’s core motivation is to pass its genes on, which keeps the species going, the forces of macroeconomics make the Human Colossus’s core motivation to create value, which means it tends to want to invent newer and better technology. Every time it does that, it becomes an even better inventor, which means it can invent new stuff even faster… The Colossus had figured out a long time ago that the best way to create value was to invent value-creating machines. Machines were better than humans at doing many kinds of work, which generated a flood of new resources that could be put towards value creation. Perhaps even more importantly, machine labor freed up huge portions of human time and energy—i.e. huge portions of the Colossus itself—to focus on innovation. It had already outsourced the work of our arms to factory machines and the work of our legs to driving machines, and it had done so through the power of its brain—now what if, somehow, it could outsource the work of the brain itself to a machine? … Information-processing was a different story—a type of brain labor we had never figured out how to outsource. The Human Colossus had always had to do all of its own computing. Computers changed that… Factory machines allowed us to outsource a physical process—we put a material in, the machines physically processed it and spit out the results. Computers could do the same thing for information processing. A software program was like a factory machine for information processes… These new information-storage/organizing/processing machines proved to be useful. Computers began to play a central role in the day-to-day operation of companies and governments. By the late 1980s, it was common for individual people to own their own personal brain assistant… In the early 90s, we taught millions of isolated machine-brains how to communicate with one another. They formed a worldwide computer network, and a new giant was born—the Computer Colossus… If individual human brains are the nerves and muscle fibers of the Human Colossus, the internet gave the giant its first legit nervous system. Each of its nodes was now interconnected to all of its other nodes, and information could travel through the system with light speed. This made the Human Colossus a faster, more fluid thinker… And if individual computers had served as brain extensions for individual people, companies, or governments, the Computer Colossus was a brain extension for the entire Human Colossus itself… With its first real nervous system, an upgraded brain, and a powerful new tool, the Human Colossus took inventing to a whole new level—and noticing how useful its new computer friend was, it focused a large portion of its efforts on advancing computer technology… It figured out how to make computers faster and cheaper. It made internet faster and wireless. It made computing chips smaller and smaller until there was a powerful computer in everyone’s pocket… But today, the Human Colossus has its eyes set on an even bigger idea than more spinach. Computers have been a game-changer, allowing humanity to outsource many of its brain-related tasks and better function as a single organism. But there’s one kind of brain labor computers still can’t quite do. Thinking… Computers can compute and organize and run complex software—software that can even learn on its own. But they can’t think in the way humans can. The Human Colossus knows that everything it’s built has originated with its ability to reason creatively and independently—and it knows that the ultimate brain extension tool would be one that can really, actually, legitimately think. It has no idea what it will be like when the Computer Colossus can think for itself—when it one day opens its eyes and becomes a real colossus—but with its core goal to create value and push technology to its limits, the Human Colossus is determined to find out… We’ve established that Elon Musk wants to build a wizard hat for the brain, and understanding why he wants to do that is the key to understanding Neuralink—and to understanding what our future might actually be like… But none of that will make much sense until we really get into the truly mind-blowing concept of what a wizard hat is, what it might be like to wear one, and how we get there from where we are today… Finally, BMIs themselves are just a larger branch—not the tree’s trunk. In order to really understand BMIs and how they work, we need to understand the brain. Getting how the brain works is our tree trunk… So we’ll start with the brain, which will prepare us to learn about BMIs, which will teach us about what it’ll take to build a wizard hat, and that’ll set things up for an insane discussion about the future—which will get our heads right where they need to be to wrap themselves around why Elon thinks a wizard hat is such a critical piece of our future. And by the time we reach the end, this whole thing should click into place… But this is what we all are. You look in the mirror and see your body and your face and you think that’s you—but that’s really just the machine you’re riding in. What you actually are is a zany-looking ball of jello. I hope that’s okay… Maybe with the help of the great knowledge tower our species is building, we can get there at some point. For now, let’s go through what we do currently know about the jellyfish in our heads—starting with the big picture… The medulla oblongata really just wants you to not die. It does the thankless tasks of controlling involuntary things like your heart rate, breathing, and blood pressure, along with making you vomit when it thinks you’ve been poisoned… The pons’s thing is that it does a little bit of this and a little bit of that. It deals with swallowing, bladder control, facial expressions, chewing, saliva, tears, and posture—really just whatever it’s in the mood for… The limbic system is a survival system. A decent rule of thumb is that whenever you’re doing something that your dog might also do—eating, drinking, having sex, fighting, hiding or running away from something scary—your limbic system is probably behind the wheel. Whether it feels like it or not, when you’re doing any of those things, you’re in primitive survival mode… The limbic system is also where your emotions live, and in the end, emotions are also all about survival—they’re the more advanced mechanisms of survival, necessary for animals living in a complex social structure… I’m pretty sure that gaining control over your limbic system is both the definition of maturity and the core human struggle. It’s not that we would be better off without our limbic systems—limbic systems are half of what makes us distinctly human, and most of the fun of life is related to emotions and/or fulfilling your animal needs—it’s just that your limbic system doesn’t get that you live in a civilization, and if you let it run your life too much, it’ll quickly ruin your life… The amygdala is kind of an emotional wreck of a brain structure. It deals with anxiety, sadness, and our responses to fear. There are two amygdalae, and oddly, the left one has been shown to be more balanced, sometimes producing happy feelings in addition to the usual angsty ones, while the right one is always in a bad mood… The condition in the movie Memento is a real thing—anterograde amnesia—and it’s caused by damage to the hippocampus. Alzheimer’s also starts in the hippocampus before working its way through many parts of the brain, which is why, of the slew of devastating effects of the disease, diminished memory happens first… In its central position in the brain, the thalamus also serves as a sensory middleman that receives information from your sensory organs and sends them to your cortex for processing. When you’re sleeping, the thalamus goes to sleep with you, which means the sensory middleman is off duty. That’s why in a deep sleep, some sound or light or touch often will not wake you up. If you want to wake someone up who’s in a deep sleep, you have to be aggressive enough to wake their thalamus up… Cortex means “bark” in Latin and is the word used for the outer layer of many organs, not just the brain. The outside of the cerebellum is the cerebellar cortex. And the outside of the cerebrum is the cerebral cortex. Only mammals have cerebral cortices. The equivalent part of the brain in reptiles is called the pallium… The neocortex is often used interchangeably with “cerebral cortex,” but it’s technically the outer layers of the cerebral cortex that are especially developed in more advanced mammals. The other parts are called the allocortex… The motor and somatosensory cortices are fun because they’re well-mapped. Neuroscientists know exactly which part of each strip connects to each part of your body. Which leads us to the creepiest diagram of this post: the homunculus… The homunculus, created by pioneer neurosurgeon Wilder Penfield, visually displays how the motor and somatosensory cortices are mapped. The larger the body part in the diagram, the more of the cortex is dedicated to its movement or sense of touch. A couple interesting things about this: … First, it’s amazing that more of your brain is dedicated to the movement and feeling of your face and hands than to the rest of your body combined. This makes sense though—you need to make incredibly nuanced facial expressions and your hands need to be unbelievably dexterous, while the rest of your body—your shoulder, your knee, your back—can move and feel things much more crudely. This is why people can play the piano with their fingers but not with their toes… Second, it’s interesting how the two cortices are basically dedicated to the same body parts, in the same proportions. I never really thought about the fact that the same parts of your body you need to have a lot of movement control over tend to also be the most sensitive to touch… Now for a long time, I thought these major lobes were chunks of the brain—like, segments of the whole 3D structure. But actually, the cortex is just the outer two millimeters of the brain—the thickness of a nickel—and the meat of the space underneath is mostly just wiring… And remember before when I said that you were a jello ball? Well the you you think of when you think of yourself—it’s really mainly your cortex. Which means you’re actually a napkin… So while it’s not perfect, modern science has a decent understanding of the big picture when it comes to the brain. We also have a decent understanding of the little picture. Let’s check it out: … An axon, the long strand of a neuron that carries information, is normally microscopic in diameter—too small for scientists to test on until recently. But in the 1930s, English zoologist J. Z. Young discovered that the squid, randomly, could change everything for our understanding, because squids have an unusually huge axon in their bodies that could be experimented on. A couple decades later, using the squid’s giant axon, scientists Alan Hodgkin and Andrew Huxley definitively figured out how neurons send information: the action potential. Here’s how it works… But if enough chemicals touch his hair to raise his charge over a certain point—the neuron’s “threshold potential”—then it triggers an action potential, and our guy is electrocuted… This is a binary situation—either nothing happens to our guy, or he’s fully electrocuted. He can’t be kind of electrocuted, or extra electrocuted—he’s either not electrocuted at all, or he’s fully electrocuted to the exact same degree every time… This is usually how info moves through the nervous system—chemical information sent in the tiny gap between neurons triggers electrical information to pass through the neuron—but sometimes, in situations when the body needs to move a signal extra quickly, neuron-to-neuron connections can themselves be electric… One nice example of the speed difference created by myelin: You know how when you stub your toe, your body gives you that one second of reflection time to think about what you just did and what you’re about to feel, before the pain actually kicks in? What’s happening is you feel both the sensation of your toe hitting against something and the sharp part of the pain right away, because sharp pain information is sent to the brain via types of axons that are myelinated. It takes a second or two for the dull pain to kick in because dull pain is sent via unmyelinated “C fibers”—at only around one meter/second… You know how sometimes you learn a new skill and you get pretty good at it, and then the next day you try again and you suck again? That’s because what made you get good at the skill the day before was adjustments to the amount or concentration of the chemicals in the signaling between neurons. Repetition caused chemicals to adjust, which helped you improve, but the next day the chemicals were back to normal so the improvement went away… But then if you keep practicing, you eventually get good at something in a lasting way. What’s happened is you’ve told the brain, “this isn’t just something I need in a one-off way,” and the brain’s neural network has responded by making structural changes to itself that last. Neurons have shifted shape and location and strengthened or weakened various connections in a way that has built a hard-wired set of pathways that know how to do that skill… Neurons’ ability to alter themselves chemically, structurally, and even functionally, allow your brain’s neural network to optimize itself to the external world—a phenomenon called neuroplasticity. Babies’ brains are the most neuroplastic of all. When a baby is born, its brain has no idea if it needs to accommodate the life of a medieval warrior who will need to become incredibly adept at sword-fighting, a 17th-century musician who will need to develop fine-tuned muscle memory for playing the harpsichord, or a modern-day intellectual who will need to store and organize a tremendous amount of information and master a complex social fabric—but the baby’s brain is ready to shape itself to handle whatever life has in store for it… Babies are the neuroplasticity superstars, but neuroplasticity remains throughout our whole lives, which is why humans can grow and change and learn new things. And it’s why we can form new habits and break old ones—your habits are reflective of the existing circuitry in your brain. If you want to change your habits, you need to exert a lot of willpower to override your brain’s neural pathways, but if you can keep it going long enough, your brain will eventually get the hint and alter those pathways, and the new behavior will stop requiring willpower. Your brain will have physically built the changes into a new habit… There are two main regions of gray matter in the brain—the internal cluster of limbic system and brain stem parts we discussed above, and the nickel-thick layer of cortex around the outside. The big chunk of white matter in between is made up mostly of the axons of cortical neurons. The cortex is like a great command center, and it beams many of its orders out through the mass of axons making up the white matter beneath it… The nervous system is divided into two parts: the central nervous system—your brain and spinal cord—and the peripheral nervous system—made up of the neurons that radiate outwards from the spinal cord into the rest of the body… Most types of neurons are interneurons—neurons that communicate with other neurons. When you think, it’s a bunch of interneurons talking to each other. Interneurons are mostly contained to the brain… Then your amygdala looks over and realizes there was a bug on you, and it tells your motor cortex to jump embarrassingly, and if it’s a spider instead of a fly, it also tells your vocal cords to yell out involuntarily and ruin your reputation… So it seems so far like we do kind of actually understand the brain, right? But then why did that professor ask that question—If everything you need to know about the brain is a mile, how far have we walked in this mile?—and say the answer was three inches? … You know how we totally get how an individual computer sends an email and we totally understand the broad concepts of the internet, like how many people are on it and what the biggest sites are and what the major trends are—but all the stuff in the middle—the inner workings of the internet—are pretty confusing? … And you know how economists can tell you all about how an individual consumer functions and they can also tell you about the major concepts of macroeconomics and the overarching forces at play—but no one can really tell you all the ins and outs of how the economy works or predict what will happen with the economy next month or next year? … The brain is kind of like those things. We get the little picture—we know all about how a neuron fires. And we get the big picture—we know how many neurons are in the brain and what the major lobes and structures control and how much energy the whole system uses. But the stuff in between—all that middle stuff about how each part of the brain actually does its thing? … The visual cortex has very nice anatomical function and structure. When you look at it, you literally see a map of the world. So when something in your visual field is in a certain region of space, you’ll see a little patch in the cortex that represents that region of space, and it’ll light up. And as that thing moves over, there’s a topographic mapping where the neighboring cells will represent that. It’s almost like having Cartesian coordinates of the real world that will map to polar coordinates in the visual cortex. And you can literally trace from your retina, through your thalamus, to your visual cortex, and you’ll see an actual mapping from this point in space to this point in the visual cortex… So that mapping is really useful if you want to interact with certain parts of the visual cortex, but there’s many regions of vision, and as you get deeper into the visual cortex, it becomes a little bit more nebulous, and this topographic representation starts to break down… There’s all these levels of things going on in the brain, and visual perception is a great example of that. We look at the world, and there’s just this physical 3D world out there—like you look at a cup, and you just see a cup—but what your eyes are seeing is really just a bunch of pixels. And when you look in the visual cortex, you see that there are roughly 20-40 different maps. V1 is the first area, where it’s tracking little edges and colors and things like that. And there’s other areas looking at more complicated objects, and there’s all these different visual representations on the surface of your brain, that you can see. And somehow all of that information is being bound together in this information stream that’s being coded in a way that makes you believe you’re just seeing a simple object… And the motor cortex, another one of the best-understood areas of the brain, might be even more difficult to understand on a granular level than the visual cortex. Because even though we know which general areas of the motor cortex map to which areas of the body, the individual neurons in these motor cortex areas aren’t topographically set up, and the specific way they work together to create movement in the body is anything but clear. Here’s Paul again: … The neural chatter in everyone’s arm movement part of the brain is a little bit different—it’s not like the neurons speak English and say “move”—it’s a pattern of electrical activity, and in everyone it’s a little bit different… And you want to be able to seamlessly understand that it means “Move the arm this way” or “move the arm toward the target” or “move the arm to the left, move it up, grasp, grasp with a certain kind of force, reach with a certain speed,” and so on. We don’t think about these things when we move—it just happens seamlessly. So each brain has a unique code with which it talks to the muscles in the arm and hand… The neuroplasticity that makes our brains so useful to us also makes them incredibly difficult to understand—because the way each of our brains works is based on how that brain has shaped itself, based on its particular environment and life experience… And again, those are the areas of the brain we understand the best. “When it comes to more sophisticated computation, like language, memory, mathematics,” one expert told me, “we really don’t understand how the brain works.” He lamented that, for example, the concept of one’s mother is coded in a different way, and in different parts of the brain, for every person. And in the frontal lobe—you know, that part of the brain where you really live—”there’s no topography at all.” … But somehow, none of this is why building effective brain-computer interfaces is so hard, or so daunting. What makes BMIs so hard is that the engineering challenges are monumental. It’s physically working with the brain that makes BMIs among the hardest engineering endeavors in the world… Alright, first let’s take Bok on a plane, and into a submarine, and to the top of the Burj Khalifa. Now we’ll show him a telescope and a TV and an iPhone. And now we’ll let him play around on the internet for a while… Bok would be shocked to learn that despite all the magical powers humans have gained as a result of having learned to speak to each other, when it comes to actually speaking to each other, we’re no more magical than the people of his day. When two people are together and talking, they’re using 50,000-year-old technology… Bok might also be surprised that in a world run by fancy machines, the people who made all the machines are walking around with the same biological bodies that Bok and his friends walk around with. How can that be? … This is why brain-machine interfaces—a subset of the broader field of neural engineering, which itself is a subset of biotechnology—are such a tantalizing new industry. We’ve conquered the world many times over with our technology, but when it comes to our brains—our most central tool—the tech world has for the most part been too daunted to dive in… That’s why we still communicate using technology Bok invented, it’s why I’m typing this sentence at about a 20th of the speed that I’m thinking it, and it’s why brain-related ailments still leave so many lives badly impaired or lost altogether… At first, this seems like maybe not that difficult a task? The brain is just a jello ball, right? And the cortex—the part of the brain in which we want to do most of our recording and stimulating—is just a napkin, located conveniently right on the outside of the brain where it can be easily accessed. Inside the cortex are around 20 billion firing neurons—20 billion oozy little transistors that if we can just learn to work with, will give us an entirely new level of control over our life, our health, and the world. Can’t we figure that out? Neurons are small, but we know how to split an atom. A neuron’s diameter is about 100,000 times as large as an atom’s—if an atom were a marble, a neuron would be a kilometer across—so we should probably be able to handle the smallness. Right? … So before we talk about BMIs themselves, we need to take a closer look at what the people trying to make BMIs are dealing with here. I find that the best way to illustrate things is to scale the brain up by exactly 1,000X and look at what’s going on… So we could walk up to 29th street, to the edge of our giant cortex napkin, and easily look at what was going on inside those two meters of thickness. For our demonstration, let’s pull out a cubic meter of our giant cortex to examine, which will show us what goes on in a typical cubic millimeter of real cortex… And of course, there’s the whole neuroplasticity thing. The voltages of each neuron would be constantly changing, as many as hundreds of times per second. And the tens of millions of synapse connections in our cube would be regularly changing sizes, disappearing, and reappearing… And the brain-machine interface engineers need to figure out what the microscopic somas buried in that millimeter are saying, and other times, to stimulate just the right somas to get them to do what the engineers want. Good luck with that… Also, engineers are not operating on a bunch of brains in a lab. The brain is covered with all those Russian doll layers, including the skull—which at 1,000X would be around seven meters thick. And since most people don’t really want you opening up their skull for very long—and ideally not at all—you have to try to work with those tiny marbles as non-invasively as possible… And this is all assuming you’re dealing with the cortex—but a lot of cool BMI ideas deal with the structures down below, which if you’re standing on top of our MSG brain, are buried 50 or 100 meters under the surface… The 1,000X game also hammers home the sheer scope of the brain. Think about how much was going on in our cube—and now remember that that’s only one 500,000th of the cortex. If we broke our whole giant cortex into similar meter cubes and lined them up, they’d stretch 500km / 310mi—all the way to Boston and beyond. And if you made the trek—which would take over 100 hours of brisk walking—at any point you could pause and look at the cube you happened to be passing by and it would have all of this complexity inside of it. All of this is currently in your brain… fMRI has many medical uses, like informing doctors whether or not certain parts of the brain are functioning properly after a stroke, and fMRI has taught neuroscientists a ton about which regions of the brain are involved with which functions. Scans also have the benefit of providing info about what’s going on in the whole brain at any given time, and it’s safe and totally non-invasive… The big drawback is resolution. fMRI scans have a literal resolution, like a computer screen has with pixels, except the pixels are three-dimensional, cubic volume pixels—or “voxels.” … Imagine that the brain is a baseball stadium, its neurons are the members of the crowd, and the information we want is, instead of electrical activity, vocal cord activity. In that case, EEG would be like a group of microphones placed outside the stadium, against the stadium’s outer walls. You’d be able to hear when the crowd was cheering and maybe predict the type of thing they were cheering about. You’d be able to hear telltale signs that it was between innings and maybe whether or not it was a close game. You could probably detect when something abnormal happened. But that’s about it… Bringing back our stadium analogy, ECoG microphones are inside the stadium and a bit closer to the crowd. So the sound is much crisper than what EEG mics get from outside the stadium, and ECoG mics can better distinguish the sounds of individual sections of the crowd. But the improvement comes at a cost—it requires invasive surgery. In the scheme of invasive surgeries, though, it’s not so bad. As one neurosurgeon described to me, “You can slide stuff underneath the dura relatively non-invasively. You still have to make a hole in the head, but it’s relatively non-invasive.” … When my father was making electrodes, he’d make them by hand. He’d take a very fine wire—like a gold or platinum or iridium wire, that was 10-30 microns in diameter, and he’d insert that wire in a glass capillary tube that was maybe a millimeter in diameter. Then they’d take that piece of glass over a flame and rotate it until the glass became soft. They’d stretch out the capillary tube until it’s incredibly thin, and then take it out of the flame and break it. Now the capillary tube is flush with and pinching the wire. The glass is an insulator and the wire is a conductor. So what you end up with is a glass-insulated stiff electrode that is maybe a few 10s of microns at the tip… LFP gives you the not-that-bad spatial resolution of the fMRI combined with the instant temporal resolution of an ECoG. Kind of the best of all the worlds described above when it comes to resolution… Unlike fMRI, EEG, and ECoG, microelectrode LFP does not have scale—it only tells you what the little sphere surrounding it is doing. And it’s far more invasive, actually entering the brain… In the baseball stadium, LFP is a single microphone hanging over a single section of seats, picking up a crisp feed of the sounds in that area, and maybe picking out an individual voice for a second here and there—but otherwise only getting the general vibe… To record a broader LFP, the electrode tip is a bit rounded to give the electrode more surface area, and they turn the resistance down with the intent of allowing very faint signals from a wide range of locations to be picked up. The end result is the electrode picks up a chorus of activity from the local field… Finally, electrodes can fully defile the neuron and actually penetrate through the membrane, which is called sharp electrode recording. If the tip is sharp enough, this won’t destroy the cell—the membrane will actually seal around the electrode, making it very easy to stimulate the neuron or record the voltage difference between the inside and outside of the neuron. But this is a short-term technique—a punctured neuron won’t survive long… In our stadium, a single unit recording is a one-directional microphone clipped to a single crowd member’s collar. A patch clamp or sharp recording is a mic in someone’s throat, registering the exact movement of their vocal cords. This is a great way to learn about that person’s experience at the game, but it also gives you no context, and you can’t really tell if the sounds and reactions of that person are representative of what’s going on in the game… And that’s about what we’ve got, at least in common usage. These tools are simultaneously unbelievably advanced and what will seem like Stone Age technology to future humans, who won’t believe you had to choose either high-res or a wide field and that you actually had to open someone’s skull to get high-quality brain readouts or write-ins… In 1969, a researcher named Eberhard Fetz connected a single neuron in a monkey’s brain to a dial in front of the monkey’s face. The dial would move when the neuron was fired. When the monkey would think in a way that fired the neuron and the dial would move, he’d get a banana-flavored pellet. Over time, the monkey started getting better at the game because he wanted more delicious pellets. The monkey had learned to make the neuron fire and inadvertently became the subject of the first real brain-machine interface… Given that both our understanding of the brain and the electrode hardware we’ve built are pretty primitive, our efforts have typically focused on building straightforward interfaces to be used with the areas of the brain we understand the best, like the motor cortex and the visual cortex… And given that human experimentation is only really possible for people who are trying to use BMIs to alleviate an impairment—and because that’s currently where the market demand is—our efforts have focused so far almost entirely on restoring lost function to people with disabilities… The major BMI industries of the future that will give all humans magical superpowers and transform the world are in their fetal stage right now—and we should look at what’s being worked on as a set of clues about what the mind-boggling worlds of 2040 and 2060 and 2100 might be like… Anyway, from everything I’ve read about and discussed with people in the field, there seem to be three major categories of brain-machine interface being heavily worked on right now: … Lift your hand up. Now put it down. See? Your hand is like a little toy drone, and your brain just picked up the motor cortex remote control and used it to make the drone fly up and then back down… The goal of motor cortex-based BMIs is to tap into the motor cortex, and then when the remote control fires a command, to hear that command and then send it to some kind of machine that can respond to it the way, say, your hand would. A bundle of nerves is the middleman between your motor cortex and your hand. BMIs are the middleman between your motor cortex and a computer. Simple… One barebones type of interface allows a human—often a person paralyzed from the neck down or someone who has had a limb amputated—to move a cursor on a screen with only their thoughts… This begins with a 100-pin multielectrode array being implanted in the person’s motor cortex. The motor cortex in a paralyzed person usually works just fine—it’s just that the spinal cord, which had served as the middleman between the cortex and the body, stopped doing its job. So with the electrode array implanted, researchers have the person try to move their arm in different directions. Even though they can’t do that, the motor cortex still fires normally, as if they can… And if 100 neurons can tell you where they want to move a cursor, why couldn’t they tell you when they want to pick up a mug of coffee and take a sip? That’s what this quadriplegic woman did: … If I record a pattern of activity, it doesn’t mean I can readily recreate that pattern of activity by just playing it back. You can compare it to the planets in the Solar System. You can watch the planets move around and record their movements. But then if you jumble them all up and later want to recreate the original motion of one of the planets, you can’t just take that one planet and put it back into its orbit, because it’ll be influenced by all the other planets. Likewise, neurons aren’t just working in isolation—so there’s a fundamental irreversibility there. On top of that, with all of the axons and dendrites, it’s hard to just stimulate the neurons you want to—because when you try, you’ll hit a whole jumble of them… Flip’s lab tries to deal with these challenges by getting the brain to help out. It turns out that if you reward a monkey with a succulent sip of orange juice when a single neuron fires, eventually the monkey will learn to make the neuron fire on demand. The neuron could then act as another kind of remote control. This means that normal motor cortex commands are only one possibility as a control mechanism. Likewise, until BMI technology gets good enough to perfect stimulation, you can use the brain’s neuroplasticity as a shortcut. If it’s too hard to make someone’s bionic fingertip touch something and send back information that feels just like the kind of sensation their own fingertip used to give them, the arm could instead send some other signal into the brain. At first, this would seem odd to the patient—but eventually the brain can learn to treat that signal as a new sense of touch. This concept is called “sensory substitution” and makes the brain a collaborator in BMI efforts… The second is that in many early applications, we don’t really need to deal with the brain—we can just deal with the place where ears and eyes connect to the brain, since that’s often where the impairment is based… And while the motor cortex stuff was mostly about recording neurons to get information out of the brain, artificial senses go the other way—stimulation of neurons to send information in… Most people who are deaf or hard of hearing don’t have a nerve problem or an auditory cortex problem—they usually have an ear problem. Their brain is as ready as anyone else’s to turn electrical impulses into hearing—it’s just that their auditory cortex isn’t receiving any electrical impulses in the first place, because the machine that converts air vibrations into those impulses isn’t doing its job… The retinal implant has 60 sensors. The retina has around a million neurons. Crude. But seeing vague edges and shapes and patterns of light and dark sure beats seeing nothing at all. What’s encouraging is that you don’t need a million sensors to gain a reasonable amount of sight—simulations suggest that 600-1,000 electrodes would be enough for reading and facial recognition… It’s also a type of category of BMI that doesn’t involve communication with the outside world—it’s about using brain-machine interfaces to treat or enhance yourself by altering something internally… This is the state of the early BMI industry, and it’s the moment when Elon Musk is stepping into it. For him, and for Neuralink, today’s BMI industry is Point A. We’ve spent the whole post so far in the past, building up to the present moment. Now it’s time to step into the future—to figure out what Point B is and how we’re going to get there… Often, before a booming industry starts booming, it’s like a pile of logs—it has all the ingredients of a fire and it’s ready to go—but there’s no match. There’s some technological shortcoming that’s preventing the industry from taking off… So when Elon builds a company, its core initial strategy is usually to create the match that will ignite the industry and get the Human Colossus working on the cause. This, in turn, Elon believes, will lead to developments that will change the world in the way that increases the likelihood of humanity having the best possible future. But you have to look at his companies from a zoomed-out perspective to see all of this. If you don’t, you’ll mistake what they do as their business for what they do—when in fact, what they do as their business is usually a mechanism to sustain the company while it innovates to try to make that critical match… Back when I was working on the Tesla and SpaceX posts, I asked Elon why he went into engineering and not science, and he explained that when it comes to progress, “engineering is the limiting factor.” In other words, the progress of science, business, and industry are all at the whim of the progress of engineering. If you look at history, this makes sense—behind each of the greatest revolutions in human progress is an engineering breakthrough. A match… And when I started trying to figure out what Neuralink was all about, I knew those were the variables I needed to fill in. At the time, I had only had the chance to get a very vague idea of one of the variables—that the goal of the company was “to accelerate the advent of a whole-brain interface.” Or what I’ve come to think of as a wizard hat… As I understood it, a whole-brain interface was what a brain-machine interface would be in an ideal world—a super-advanced concept where essentially all the neurons in your brain are able to communicate seamlessly with the outside world. It was a concept loosely based on the science fiction idea of a “neural lace,” described in Iain Banks’ Culture series—a massless, volumeless, whole-brain interface that can be teleported into the brain… I asked Elon about how he brought this team together. He said that he met with literally over 1,000 people in order to assemble this group, and that part of the challenge was the large number of totally separate areas of expertise required when you’re working on technology that involves neuroscience, brain surgery, microscopic electronics, clinical trials, etc. Because it was such a cross-disciplinary area, he looked for cross-disciplinary experts. And you can see that in those bios—everyone brings their own unique crossover combination to a group that together has the rare ability to think as a single mega-expert. Elon also wanted to find people who were totally on board with the zoomed-out mission—who were more focused on industrial results than producing white papers. Not an easy group to assemble… They took the hint and dumbed it down about four notches, and as the discussion went on, I started to wrap my head around things. Throughout the next few weeks, I met with each of the remaining Neuralink team members as well, each time playing the role of the dumbest person in the room. In these meetings, I focused on trying to form a comprehensive picture of the challenges at hand and what the road to a wizard hat might look like. I really wanted to understand these two boxes: … The second box was a lot hazier. It seems obvious to us today that using steam engine technology to harness the power of fire was the thing that had to happen to ignite the Industrial Revolution. But if you talked to someone in 1760 about it, they would have had a lot less clarity—on exactly which hurdles they were trying to get past, what kinds of innovations would allow them to leap over those hurdles, or how long any of this would take. And that’s where we are here—trying to figure out what the match looks like that will ignite the neuro revolution and how to create it… The starting place for a discussion about innovation is a discussion about hurdles—what are you even trying to innovate past? In Neuralink’s case, a whole lot of things. But given that, here too, engineering will likely prove to be the limiting factor, here are some seemingly large challenges that probably won’t end up being the major roadblock: … To a scientist, to think about changing the fundamental nature of life—creating viruses, eugenics, etc.—it raises a specter that many biologists find quite worrisome, whereas the neuroscientists that I know, when they think about chips in the brain, it doesn’t seem that foreign, because we already have chips in the brain. We have deep brain stimulation to alleviate the symptoms of Parkinson’s Disease, we have early trials of chips to restore vision, we have the cochlear implant—so to us it doesn’t seem like that big of a stretch to put devices into a brain to read information out and to read information back in… History supports this prediction. People were super timid about Lasik eye surgery when it first became a thing—20 years ago, 20,000 people a year had the procedure done. Then everyone got used to it and now 2,000,000 people a year get laser eye surgery. Similar story with pacemakers. And defibrillators. And organ transplants—which people at first considered a freakish Frankenstein-esque concept. Brain implants will probably be the same story… If it were a prerequisite to understand the brain in order to interact with the brain in a substantive way, we’d have trouble. But it’s possible to decode all of those things in the brain without truly understanding the dynamics of the computation in the brain. Being able to read it out is an engineering problem. Being able to understand its origin and the organization of the neurons in fine detail in a way that would satisfy a neuroscientist to the core—that’s a separate problem. And we don’t need to solve all of those scientific problems in order to make progress… If we can just use engineering to get neurons to talk to computers, we’ll have done our job, and machine learning can do much of the rest. Which then, ironically, will teach us about the brain. As Flip points out: … The flip side of saying, “We don’t need to understand the brain to make engineering progress,” is that making engineering progress will almost certainly advance our scientific knowledge—kind of like the way Alpha Go ended up teaching the world’s best players better strategies for the game. Then this scientific progress can lead to more engineering progress. The engineering and the science are gonna ratchet each other up here… Neuralink’s hurdles are technology hurdles—and there are many. But two challenges stand out as the largest—challenges that, if conquered, may be impactful enough to trigger all the other hurdles to fall and totally change the trajectory of our future… There have never been more than a couple hundred electrodes in a human brain at once. When it comes to vision, that equals a super low-res image. When it comes to motor, that limits the possibilities to simple commands with little control. When it comes to your thoughts, a few hundred electrodes won’t be enough to communicate more than the simplest spelled-out message… The Neuralink team threw out the number “one million simultaneously recorded neurons” when talking about an interface that could really change the world. I’ve also heard 100,000 as a number that would allow for the creation of a wide range of incredibly useful BMIs with a variety of applications… Early computers had a similar problem. Primitive transistors took up a lot of space and didn’t scale easily. Then in 1959 came the integrated circuit—the computer chip. Now there was a way to scale the number of transistors in a computer, and Moore’s Law—the concept that the number of transistors that can fit onto a computer chip doubles every 18 months—was born… This is everything for the industry’s potential. Our maximum today is a couple hundred electrodes able to measure about 500 neurons at once—which is either super far from a million or really close, depending on the kind of growth pattern we’re in. If we add 500 more neurons to our maximum every 18 months, we’ll get to a million in the year 5017. If we double our total every 18 months, like we do with computer transistors, we’ll get to a million in the year 2034… Sometimes called Stevenson’s Law, this research suggests that the number of neurons we can simultaneously record seems to consistently double every 7.4 years. If that rate continues, it’ll take us till the end of this century to reach a million, and until 2225 to record every neuron in the brain and get our totally complete wizard hat… Whatever the equivalent of the integrated circuit is for BMIs isn’t here yet, because 7.4 years is too big a number to start a revolution. The breakthrough here isn’t the device that can record a million neurons—it’s the paradigm shift that makes the future of that graph look more like Moore’s Law and less like Stevenson’s Law. Once that happens, a million neurons will follow… On top of being both a major barrier to entry and a major safety issue, invasive brain surgery is expensive and in limited supply. Elon talked about an eventual BMI implantation process that could be automated: “The machine to accomplish this would need to be something like Lasik, an automated process—because otherwise you just get constrained by the limited number of neural surgeons, and the costs are very high. You’d need a Lasik-like machine ultimately to be able to do this at scale.” … Today’s BMI patients have a wire coming out of their head. In the future, that certainly won’t fly. Neuralink plans to work on devices that will be wireless. But that brings a lot of new challenges with it. You’ll now need your device to be able to send and receive a lot of data wirelessly. Which means the implant also has to take care of things like signal amplification, analog-to-digital conversion, and data compression on its own. Oh and it needs to be powered inductively… Then there’s the space issue. Where exactly are you gonna put your device that can interface with a million neurons in a skull that’s already dealing with making space for 100 billion neurons? A million electrodes using today’s multielectrode arrays would be the size of a baseball. So further miniaturization is another dramatic innovation to add to the list… There’s also the fact that today’s electrodes are mostly optimized for simple electrical recording or simple electrical stimulation. If we really want an effective brain interface, we’ll need something other than single-function, stiff electrodes—something with the mechanical complexity of neural circuits, that can both record and stimulate, and that can interact with neurons chemically and mechanically as well as electrically… And just say all of this comes together perfectly—a high-bandwidth, long-lasting, biocompatible, bidirectional communicative, non-invasively-implanted device. Now we can speak back and forth with a million neurons at once! Except this little thing where we actually don’t know how to talk to neurons. It’s complicated enough to decode the static-like firings of 100 neurons, but all we’re really doing is learning what a set of specific firings corresponds to and matching them up to simple commands. That won’t work with millions of signals. It’s like how Google Translate essentially uses two dictionaries to swap words from one dictionary to another—which is very different than understanding language. We’ll need a pretty big leap in machine learning before a computer will be able to actually know a language, and we’ll need just as big a leap for machines to understand the language of the brain—because humans certainly won’t be learning to decipher the code of millions of simultaneously chattering neurons… And yet, there it is in your pocket. If there’s one thing we should learn from the past, it’s that there will always be ubiquitous technology of the future that’s inconceivable to people of the past. We don’t know which technologies that seem positively impossible to us will turn out to be ubiquitous later in our lives—but there will be some. People always underestimate the Human Colossus… If everyone you know in 40 years has electronics in their skull, it’ll be because a paradigm shift took place that caused a fundamental shift in this industry. That shift is what the Neuralink team will try to figure out. Other teams are working on it too, and some cool ideas are being developed: … Silk can be rolled up into a thin bundle and inserted into the brain relatively non-invasively. There, it would theoretically spread out around the brain and melt into the contours like shrink wrap. On the silk would be flexible silicon transistor arrays… Other non-invasive techniques involve going in through veins and arteries. Elon mentioned this: “The least invasive way would be something that comes in like a hard stent like through a femoral artery and ultimately unfolds in the vascular system to interface with the neurons. Neurons use a lot of energy, so there’s basically a road network to every neuron.” … It’s a relatively small group right now, but when the breakthrough spark happens, that’ll quickly change. Developments will begin to happen rapidly. Brain interface bandwidth will get better and better as the procedures to implant them become simpler and cheaper. Public interest will pick up. And when public interest picks up, the Human Colossus notices an opportunity—and then the rate of development skyrockets. Just like the breakthroughs in computer hardware caused the software industry to explode, major industries will pop up working on cutting-edge machines and intelligent apps to be used in conjunction with brain interfaces, and you’ll tell some little kid in 2052 all about how when you grew up, no one could do any of the things she can do with her brain, and she’ll be bored… Ever since the Human Colossus was born, our world has had a weird property to it—it gets more magical as time goes on. That’s why DPUs are a thing. And because advancement begets more rapid advancement, the trend is that as time passes, the DPUs get shorter. For George Washington, a DPU was a couple hundred years, which is outrageously short in the scheme of human history. But we now live in a time where things are moving so fast that we might experience one or even multiple DPUs in our lifetime. The amount that changed between 1750 and 2017 might happen again between now and another time when you’re still alive. This is a ridiculous time to be alive—it’s just hard for us to notice because we live life so zoomed in… Anyway, I think about DPUs a lot and I always wonder what it would feel like to go forward in a time machine and experience what George would experience coming here. What kind of future could blow my mind so hard that it would kill me? We can talk about things like AI and gene editing—and I have no doubt that progress in those areas could make me die of shock—but it’s always, “Who knows what it’ll be like!” Never a descriptive picture… The budding industry of brain-machine interfaces is the seed of a revolution that will change just about everything. But in many ways, the brain-interface future isn’t really a new thing that’s happening. If you take a step back, it looks more like the next big chapter in a trend that’s been going on for a long time. Language took forever to turn into writing, which then took forever to turn into printing, and that’s where things were when George Washington was around. Then came electricity and the pace picked up. Telephone. Radio. Television. Computers. And just like that, everyone’s homes became magical. Then phones became cordless. Then mobile. Computers went from being devices for work and games to windows into a digital world we all became a part of. Then phones and computers merged into an everything device that brought the magic out of our homes and put it into our hands. And on our wrists. We’re now in the early stages of a virtual and augmented reality revolution that will wrap the magic around our eyes and ears and bring our whole being into the digital world… Magic has worked its way from industrial facilities to our homes to our hands and soon it’ll be around our heads. And then it’ll take the next natural step. The magic is heading into our brains… It will happen by way of a “whole-brain interface,” or what I’ve been calling a wizard hat—a brain interface so complete, so smooth, so biocompatible, and so high-bandwidth that it feels as much a part of you as your cortex and limbic system. A whole-brain interface would give your brain the ability to communicate wirelessly with the cloud, with computers, and with the brains of anyone with a similar interface in their head. This flow of information between your brain and the outside world would be so effortless, it would feel similar to the thinking that goes on in your head today. And though we’ve used the term brain-machine interface so far, I kind of think of a BMI as a specific brain interface to be used for a specific purpose, and the term doesn’t quite capture the everything-of-everything concept of the whole-brain interface. So I’ll call that a wizard hat instead… Elon calls the whole-brain interface and its many capabilities a “digital tertiary layer,” a term that has two levels of meaning that correspond to our two mind-bending ideas above… We already have a digital tertiary layer in a sense, in that you have your computer or your phone or your applications. You can ask a question via Google and get an answer instantly. You can access any book or any music. With a spreadsheet, you can do incredible calculations. If you had an Empire State building filled with people—even if they had calculators, let alone if they had to do it with a pencil and paper—one person with a laptop could outdo the Empire State Building filled with people with calculators. You can video chat with someone in freaking Timbuktu for free. This would’ve gotten you burnt for witchcraft in the old days. You can record as much video with sound as you want, take a zillion pictures, have them tagged with who they are and when it took place. You can broadcast communications through social media to millions of people simultaneously for free. These are incredible superpowers that the President of the United States didn’t have twenty years ago… The thing that people, I think, don’t appreciate right now is that they are already a cyborg. You’re already a different creature than you would have been twenty years ago, or even ten years ago. You’re already a different creature. You can see this when they do surveys of like, “how long do you want to be away from your phone?” and—particularly if you’re a teenager or in your 20s—even a day hurts. If you leave your phone behind, it’s like missing limb syndrome. I think people—they’re already kind of merged with their phone and their laptop and their applications and everything… This is a hard point to really absorb, because we don’t feel like cyborgs. We feel like humans who use devices to do things. But think about your digital self—you when you’re interacting with someone on the internet or over FaceTime or when you’re in a YouTube video. Digital you is fully you—as much as in-person you is you—right? The only difference is that you’re not there in person—you’re using magic powers to send yourself to somewhere far away, at light speed, through wires and satellites and electromagnetic waves. The difference is the medium… Before language, there wasn’t a good way to get a thought from your brain into my brain. Then early humans invented the technology of language, transforming vocal cords and ears into the world’s first communication devices and air as the first communication medium. We use these devices every time we talk to each other in person. It goes: … In that sense, your phone is as much “you” as your vocal cords or your ears or your eyes. All of these things are simply tools to move thoughts from brain to brain—so who cares if the tool is held in your hand, your throat, or your eye sockets? The digital age has made us a dual entity—a physical creature who interacts with its physical environment using its biological parts and a digital creature whose digital devices—whose digital parts—allow it to interact with the digital world… But because we don’t think of it like that, we’d consider someone with a phone in their head or throat a cyborg and someone else with a phone in their hand, pressed up against their head, not a cyborg. Elon’s point is that the thing that makes a cyborg a cyborg is their capabilities—not from which side of the skull those capabilities are generated… We’re already a cyborg, we already have superpowers, and we already spend a huge part of our lives in the digital world. And when you think of it like that, you realize how obvious it is to want to upgrade the medium that connects us to that world. This is the change Elon believes is actually happening when the magic goes into our brains: … You’re already digitally superhuman. The thing that would change is the interface—having a high-bandwidth interface to your digital enhancements. The thing is that today, the interface all necks down to this tiny straw, which is, particularly in terms of output, it’s like poking things with your meat sticks, or using words—either speaking or tapping things with fingers. And in fact, output has gone backwards. It used to be, in your most frequent form, output would be ten-finger typing. Now, it’s like, two-thumb typing. That’s crazy slow communication. We should be able to improve that by many orders of magnitude with a direct neural interface… In other words, putting our technology into our brains isn’t about whether it’s good or bad to become cyborgs. It’s that we are cyborgs and we will continue to be cyborgs—so it probably makes sense to upgrade ourselves from primitive, low-bandwidth cyborgs to modern, high-bandwidth cyborgs… A whole-brain interface is that upgrade. It changes us from creatures whose primary and secondary layers live inside their heads and whose tertiary layer lives in their pocket, in their hand, or on their desk— … Your life is full of devices, including the one you’re currently using to read this. A wizard hat makes your brain into the device, allowing your thoughts to go straight from your head into the digital world… Elon always emphasizes bandwidth when he talks about Neuralink’s wizard hat goals. Interface bandwidth allows incoming images to be HD, incoming sound to be hi-fi, and motor movement commands to be tightly controlled—but it’s also a huge factor in communication. If information were a milkshake, bandwidth would be the width of the straw. Today, the bandwidth-of-communication graph looks something like this: … There are a bunch of concepts in your head that then your brain has to try to compress into this incredibly low data rate called speech or typing. That’s what language is—your brain has executed a compression algorithm on thought, on concept transfer. And then it’s got to listen as well, and decompress what’s coming at it. And this is very lossy as well. So, then when you’re doing the decompression on those, trying to understand, you’re simultaneously trying to model the other person’s mind state to understand where they’re coming from, to recombine in your head what concepts they have in their head that they’re trying to communicate to you… If you have two brain interfaces, you could actually do an uncompressed direct conceptual communication with another person… This makes sense—nuance is like a high-resolution thought, which makes the file simply too big to transfer quickly through a coffee straw. The coffee straw gives you two bad options when it comes to nuance: take a lot of time saying a lot of words to really depict the nuanced thought or imagery you want to convey to me, or save time by using succinct language—but inevitably fail to transfer over the nuance. Compounding the effect is the fact that language itself is a low-resolution medium. A word is simply an approximation of a thought—buckets that a whole category of similar-but-distinct thoughts can all be shoved into. If I watch a horror movie and want to describe it to you in words, I’m stuck with a few simple low-res buckets—“scary” or “creepy” or “chilling” or “intense.” My actual impression of that movie is very specific and not exactly like any other movie I’ve seen—but the crude tools of language force my brain to “round to the nearest bucket” and choose the word that most closely resembles my actual impression, and that’s the information you’ll receive from me. You won’t receive the thought—you’ll receive the bucket—and now you’ll have to guess which of the many nuanced impressions that all approximate to that bucket is the most similar to my impression of the movie. You’ll decompress my description—“scary as shit”—into a high-res, nuanced thought that you associate with “scary as shit,” which will inevitably be based on your own experience watching other horror movies, and your own personality. The end result is that a lot has been lost in translation—which is exactly what you’d expect when you try to transfer a high-res file over a low-bandwidth medium, quickly, using low-res tools. That’s why Elon calls language data transfer “lossy.” … We do the best we can with these limitations—and over time, we’ve supplemented language with slightly higher-resolution formats like video to better convey nuanced imagery, or music to better convey nuanced emotion. But compared to the richness and uniqueness of the ideas in our heads, and the large-bandwidth straw our internal thoughts flow through, all human-to-human communication is very lossy… It really may be that the second major era of communication—the 100,000-year Era of Indirect Communication—is in its very last moments. If we zoom out on the timeline, it’s possible the entire last 150 years, during which we’ve suddenly been rapidly improving our communication media, will look to far-future humans like one concept: the transition from Era 2 to Era 3. We might be living on the line that divides timeline sections… And because indirect communication requires third-party body parts or digital parts, the end of Era 2 may be looked back upon as the era of physical devices. In an era where your brain is the device, there will be no need to carry anything around. You’ll have your body and, if you want, clothes—and that’s it… One thing to keep in mind as we think about all of this is that none of it will take you by surprise. You won’t go from having nothing in your brain to a digital tertiary layer in your head, just like people didn’t go from the Apple IIGS to using Tinder overnight. The Wizard Era will come gradually, and by the time the shift actually begins to happen, we’ll all be very used to the technology, and it’ll seem normal… Supporting this point is the fact the staircase up to the Wizard Era has already started, and you haven’t even noticed. But there are thousands of people currently walking around with electrodes in their brain, like those with cochlear implants, retinal implants, and deep brain implants—all benefiting from early BMIs… The next few steps on the staircase will continue to focus on restoring lost function in different parts of the body—the first people to have their lives transformed by digital brain technology will be the disabled. As specialized BMIs serve more and more forms of disability, the concept of brain implants will work its way in from the fringes and become something we’re all used to—just like no one blinks an eye when you say your friend just got Lasik surgery or your grandmother just got a pacemaker installed… The first use of the technology will be to repair brain injuries as a result of stroke or cutting out a cancer lesion, where somebody’s fundamentally lost a certain cognitive element. It could help with people who are quadriplegics or paraplegics by providing a neural shunt from the motor cortex down to where the muscles are activated. It can help with people who, as they get older, have memory problems and can’t remember the names of their kids, through memory enhancement, which could allow them to function well to a much later time in life—the medically advantageous elements of this for dealing with mental disablement of one kind or another, which of course happens to all of us when we get old enough, are very significant… Prosthetic limbs—and eventually sleek, full-body exoskeletons underneath your clothes—will work so well, providing both outgoing motor functions and an incoming sense of touch, that paralysis or amputations will only have a minor long-term effect on people’s lives… As mobile phones got cheaper, and better, they went from new and fancy and futuristic to ubiquitous. As we go down the same road with brain interfaces, things are going to get really cool… Based on what I learned from my conversations with Elon, Ramez, and a dozen neuroscientists, let’s look at what the world might look like in a few decades. The timeline is uncertain, including the order in which the below developments may become a reality. And, of course, some of the below predictions are sure to be way off the mark, just as there will be other developments in this field that won’t be mentioned here because people today literally can’t imagine them yet… “Communication” in this section can mean human-to-human or human-to-computer. Motor communication is all about human-to-computer—the whole “motor cortex as remote control” thing from earlier, but now the unbelievably rad version… Like many future categories of brain interface possibility, motor communication will start with restoration applications for the disabled, and as those development efforts continually advance the possibilities, the technology will begin to be used to create augmentation applications for the non-disabled as well. The same technologies that will allow a quadriplegic to use their thoughts as a remote control to move a bionic limb can let anyone use their thoughts as a remote control…to move anything. Well not anything—I’m not talking about telekinesis—anything built to be used with a brain remote. But in the Wizard Era, lots of things will be built that way… None of this stuff will take any effort or thought—we’ll all get very good at it and it’ll feel as automatic and subconscious as moving your eyes to read this sentence does to you now… People will play the piano with their thoughts. And do building construction. And steer vehicles. In fact, today, if you’re driving somewhere and something jumps out in the road in front of you, what neuroscientists know is that your brain sees it and begins to react well before your consciousness knows what’s going on or your arms move to steer out of the way. But when your brain is the one steering the car, you’ll have swerved out of the way before you even realize what happened… This is what we discussed up above—but you have to resist the natural instinct to equate a thought conversation with a normal language conversation where you simply hear each other’s voices in your head. As we discussed, words are compressed approximations of uncompressed thoughts, so why would you ever bother with any of that, or deal with lossiness, if you didn’t have to? When you watch a movie, your head is buzzing with thoughts—but do you have a compressed spoken word dialogue going on in your head? Probably not—you’re just thinking. Thought conversations will be like that… That’s the thing—it’s difficult to really understand what it would be like to think with someone. We’ve never been able to try. We communicate with ourselves through thought and with everyone else through symbolic representations of thought, and that’s all we can imagine… That type of communication would have a huge impact on the pace of innovation, as scientists and engineers could work more fluidly together. And it’s just as likely to have a transformative effect on the public sphere, in the same way that email, blogs, and Twitter have successively changed public discourse… The idea of collaboration today is supposed to be two or more brains working together to come up with things none of them could have on their own. And a lot of the time, it works pretty well—but when you consider the “lost in transmission” phenomenon that happens with language, you realize how much more effective group thinking would be… He assured me they would not. “People won’t be able to read your thoughts—you would have to will it. If you don’t will it, it doesn’t happen. Just like if you don’t will your mouth to talk, it doesn’t talk.” Phew… You can also think with a computer. Not just to issue a command, but to actually brainstorm something with a computer. You and a computer could strategize something together. You could compose a piece of music together. Ramez talked about using a computer as an imagination collaborator: “You could imagine something, and the computer, which can better forward predict or analyze physical models, could fill in constraints—and that allows you to get feedback.” … One concern that comes up when people hear about thought communication in particular is a potential loss of individuality. Would this make us one great hive mind with each individual brain as just another bee? Almost across the board, the experts I talked to believed it would be the opposite. We could act as one in a collaboration when it served us, but technology has thus far enhanced human individuality. Think of how much easier it is for people today to express their individuality and customize life to themselves than it was 50 or 100 or 500 years ago. There’s no reason to believe that trend won’t continue with more progress… Similar to thought communication, but imagine how much easier it would be to describe a dream you had or a piece of music stuck in your head or a memory you’re thinking about if you could just beam the thing into someone’s head, like showing them on your computer screen. Or as Elon said, “I could think of a bouquet of flowers and have a very clear picture in my head of what that is. It would take a lot of words for you to even have an approximation of what that bouquet of flowers looks like.” … How much faster could a team of engineers or architects or designers plan out a new bridge or a new building or a new dress if they could beam the vision in their head onto a screen and others could adjust it with their minds, versus sketching things out—which not only takes far longer, but probably is inevitably lossy? … How many symphonies could Mozart have written if he had been able to think the music in his head onto the page? How many Mozarts are out there right now who never learned how to play instruments well enough to get their talent out? … Emotions are the quintessential example of a concept that words are poorly-equipped to accurately describe. If ten people say, “I’m sad,” it actually means ten different things. In the Wizard Era, we’ll probably learn pretty quickly that the specific emotions people feel are as unique to people as their appearance or sense of humor… This could work as communication—when one person communicates just what they’re feeling, the other person would be able to access the feeling in their own emotional centers. Obvious implications for a future of heightened empathy. But emotional communication could also be used for things like entertainment, where a movie, say, could also project out to the audience—directly into their limbic systems—certain feelings it wants the audience to feel as they watch. This is already what the film score does—another hack—and now it could be done directly… Right now, the only two microphones that can act as inputs for the “speaker” in your head—your auditory cortex—are your two ears. The only two cameras that can be hooked up to the projector in your head—your visual cortex—are your two eyes. The only sensory surface that you can feel is your skin. The only thing that lets you experience taste is your tongue… But in the same way we can currently hook an implant, for example, into someone’s cochlea—which connects a different mic to their auditory cortex—down the road we’ll be able to let sensory input information stream into your wizard hat wirelessly, from anywhere, and channel right into your sensory cortices the same way your bodily sensory organs do today. In the future, sensory organs will be only one set of inputs into your senses—and compared to what our senses will have access to, not a very exciting one… Currently, the only speaker your ear inputs can play out of is your auditory cortex. Only you can see what your eye cameras capture and only you can feel what touches your skin—because only you have access to the particular cortices those inputs are wired to. With a wizard hat, it would be a breeze for your brain to beam those input signals out of your head… Say you’re on a beautiful hike and you want to show your husband the view. No problem—just think out to him to request a brain connection. When he accepts, connect your retina feed to his visual cortex. Now his vision is filled with exactly what your eyes see, as if he’s there. He asks for the other senses to get the full picture, so you connect those too and now he hears the waterfall in the distance and feels the breeze and smells the trees and jumps when a bug lands on your arm. You two share the equivalent of a five-minute discussion about the scene—your favorite parts, which other places it reminds you of, etc. along with a shared story from his day—in a 30-second thought session. He says he has to get back to what he was working on, so he cuts off the sense connections except for vision, which he reduces to a little picture-in-picture window on the side of his visual field so he can check out more of the hike from time to time… A surgeon could control a machine scalpel with her motor cortex instead of holding one in her hand, and she could receive sensory input from that scalpel so that it would feel like an 11th finger to her. So it would be as if one of her fingers was a scalpel and she could do the surgery without holding any tools, giving her much finer control over her incisions. An inexperienced surgeon performing a tough operation could bring a couple of her mentors into the scene as she operates to watch her work through her eyes and think instructions or advice to her. And if something goes really wrong, one of them could “take the wheel” and connect their motor cortex to her outputs to take control of her hands… An NBA player could send out a livestream invitation to his fans before a game, which would let them see and hear through his eyes and ears while he plays. Those who miss it could jump into the recording later… Right now, you can go on YouTube and watch a first-hand account of almost anything, for free. This would have blown George Washington’s mind—but in the Wizard Era, you’ll be able to actually experience almost anything for free. The days of fancy experiences being limited to rich people will be long over… Another idea, via the imagination of Moran Cerf: Maybe player brain injuries will drive the NFL to alter the rules so that the players’ biological bodies stay on the sidelines, while they play the game with an artificial body whose motor cortex they control and whose eyes and ears they see and hear through. I like this idea and think it would be closer to the current NFL than it seems at first. In one way, you’ll still need to be a great athlete to play, since most of what makes a great athlete great is their motor cortex, their muscle memory, and their decision-making. But the other component of being a great athlete—the physical body itself—would now be artificial. The NFL could make all of the artificial playing bodies identical—this would be a cool way to see whose skills were actually best—or they could insist that artificial body matches in every way the biological body of the athlete, to mimic as closely as possible how the game would go if players used their biological bodies like in the old days. Either way, if this rule change happened, you can imagine how crazy it would seem to people that players used to have their actual, fragile brains on the field… A whole-brain interface can stimulate any part of your brain in any way—it has to have this capability for the input half of all the communication examples above. But that capability also gives you a whole new level of control over your brain. Here are some ways people of the future might take advantage of that: … Often, the battle in our heads between our prefrontal cortex and limbic system comes down to the fact that both parties are trying to do what’s best for us—it’s just that our limbic system is wrong about what’s best for us because it thinks we live in a tribe 50,000 years ago… Your limbic system isn’t making you eat your ninth Starburst candy in a row because it’s a dick—it’s making you eat it because it thinks that A) any fruit that sweet and densely chewy must be super rich in calories and B) you might not find food again for the next four days so it’s a good idea to load up on a high-calorie food whenever the opportunity arises… Pharmaceuticals enter the brain and then spread out randomly, hitting whatever receptor they work on all across your brain. Neural interfaces, by contrast, can stimulate just one area at a time, can be tuned in real-time, and can carry information out about what’s happening… Or maybe you want a new sense. You love bird watching and want to be able to sense when there’s a bird nearby. So you buy an infrared camera that can detect bird locations by their heat signals and you link it to your brain interface, which stimulates neurons in a certain way to alert you to the presence of a bird and tell you its location. I can’t describe what you’d experience when it alerts you, so I’ll just say words like “feel” or “see,” because I can only imagine the five senses we have. But in the future, there will be more words for new, useful types of senses… There’s evidence from experiments with rats that it’s possible to boost how fast a brain can learn—sometimes by 2x or even 3x—just by priming certain neurons to prepare to make a long-term connection… Your brain would also have access to all the knowledge in the world, at all times. I talked to Ramez about how accessing information in the cloud might work. We parsed it out into four layers of capability, each requiring a more advanced brain interface than the last: … Level 1: I want to know a fact. I call on the cloud for that info—like Googling something with my brain—and the answer, in text, appears in my mind’s eye. Basically what I do now except it all happens in my head… Level 2: I want to know a fact. I call on the cloud for that info, and then a second later I just know it. No reading was involved—it was more like the way I’d recall something from memory… Level 3: I just know the fact I want to know the second I want it. I don’t even know if it came from the cloud or if it was stored in my brain. I can essentially treat the whole cloud like my brain. I don’t know all the info—my brain could never fit it all—but any time I want to know something it downloads into my consciousness so seamlessly and quickly, it’s as if it were there all along… Level 4: Beyond just knowing facts, I can deeply understand anything I want to, in a complex way. We discussed the example of Moby Dick. Could I download Moby Dick from the cloud into my memory and then suddenly have it be the same as if I had read the whole book? Where I’d have thoughts and opinions and I could cite passages and have discussions about the themes? … Trolls can have an even fielder day. The troll-type personalities of the world have been having a field day ever since the internet came out. They literally can’t believe their luck. But with brain interfaces, they’ll have an even fielder day. Being more connected to each other means a lot of good things—like empathy going up as a result of more exposure to all kinds of people—but it also means a lot of bad things. Just like the internet. Bad guys will have more opportunity to spread hate or build hateful coalitions. The internet has been a godsend for ISIS, and a brain-connected world would be an even more helpful recruiting tool… Computers crash. And they have bugs. And normally that’s not the end of the world, because you can try restarting, and if it’s really being a piece of shit, you can just get a new computer. You can’t get a new head. There will have to be a way way higher number of precautions taken here… Holy shit computers can be hacked. In the last item I was thinking about bad guys using hacking to steal information from my brain. But brain interfaces can also put information in. Meaning a clever hacker might be able to change your thoughts or your vote or your identity or make you want to do something terrible you normally wouldn’t ever consider. And you wouldn’t know it ever happened. You could feel strongly about voting for a candidate and a little part of you would wonder if someone manipulated your thoughts so you’d feel that way. The darkest possible scenario would be an ISIS-type organization actually influencing millions of people to join their cause by altering their thoughts. This is definitely the scariest paragraph in this post. Let’s get out of here… Physics advancements allow bad guys to make nuclear bombs. Biological advancements allow bad guys to make bioweapons. The invention of cars and planes led to crashes that kill over a million people a year. The internet enabled the spread of fake news, made us vulnerable to cyberattack, made terrorist recruiting efforts easier, and allowed predators to flourish… New technology also comes along with real dangers and it always does end up harming a lot of people. But it also always seems to help a lot more people than it harms. Advancing technology almost always proves to be a net positive… People also love to hate the concept of new technology—because they worry it’s unhealthy and makes us less human. But those same people, if given the option, usually wouldn’t consider going back to George Washington’s time, when half of children died before the age of 5, when traveling to other parts of the world was impossible for almost everyone, when a far greater number of humanitarian atrocities were being committed than there are today, when women and ethnic minorities had far fewer rights across the world than they do today, when far more people were illiterate and far more people were living under the poverty line than there are today. They wouldn’t go back 250 years—a time right before the biggest explosion of technology in human history happened. Sounds like people who are immensely grateful for technology. And yet their opinion holds—our technology is ruining our lives, people in the old days were much wiser, our world’s going to shit, etc. I don’t think they’ve thought about it hard enough… So when it comes to what will be a long list of dangers of the Wizard Era—they suck, and they’ll continue to suck as some of them play out into sickening atrocities and catastrophes. But a vastly larger group of good guys will wage war back, as they always do, and a giant “brain security” industry will be born. And I bet, if given the option, people in the Wizard Era wouldn’t for a second consider coming back to 2017… The timeline for our road to the Wizard Era is one of those times—in large part because no one knows to what extent we’ll be able to make Stevenson’s Law look more like Moore’s Law… My conversations yielded a wide range of opinions on the timeline. One neuroscientist predicted that I’d have a whole-brain interface in my lifetime. Mark Zuckerberg said: “I would be pretty disappointed if in 25 years we hadn’t made some progress towards thinking things to computers.” One prediction on the longer end came from Ramez Naam, who thought the time of people beginning to install BMIs for reasons other than disability might not come for 50 years and that mass adoption would take even longer… I think we are about 8 to 10 years away from this being usable by people with no disability … It is important to note that this depends heavily on regulatory approval timing and how well our devices work on people with disabilities… With Elon’s companies, there’s always some “result of the goal” that’s his real reason for starting the company—the piece that ties the company’s goal into humanity’s better future. In the case of Neuralink, it’s a piece that takes a lot of tree climbing to understand. But with the view from all the way up here, we’ve got everything we need for our final stretch of the road… Imagine an alien explorer is visiting a new star and finds three planets circling it, all with life on them. The first happens to be identical to the way Earth was in 10 million BC. The second happens to be identical to Earth in 50,000 BC. And the third happens to be identical to Earth in 2017 AD… The alien is no expert on primitive biological life but circles around all three planets, peering down at each with his telescope. On the first, he sees lots of water and trees and mountains and some little signs of animal life. He makes out a herd of elephants on an African plain, a group of dolphins skipping along the ocean’s surface, and a few other scattered critters living out their Tuesday… Bored, he moves on to the third planet. Whoa. He sees planes crawling around above the land, vast patches of gray land with towering buildings on them, ships of all kinds sprinkled across the seas, long railways stretching across continents, and he has to jerk his spaceship out of the way when a satellite soars by him… In fact, it’s the first planet that’s the odd one out. Both the second and third planets have intelligent life on them—equally intelligent life. So equal that you could kidnap a newborn baby from Planet 2 and swap it with a newborn on Planet 3 and both would grow up as normal people on the other’s planet, fitting in seamlessly. Same people… Plop a baby human into a group of chimps and ask them to raise him, Tarzan style, and the human as an adult will know how to run around the forest, climb trees, find food, and masturbate. That’s who each of us actually is… The invention of language allowed each human brain to dump its knowledge onto a pile before its death, and the pile became a tower and grew taller and taller until one day, it became the brain of a great Colossus that built us a civilization. The Human Colossus has been inventing things ever since, getting continually better at it with time. Driven only by the desire to create value, the Colossus is now moving at an unprecedented pace—which is why we live in an unprecedented and completely anomalous time in history… Well the truth is, we seem to be on a lot of historic timeline boundaries. After 1,000 centuries of human life and 3.8 billion years of Earthly life, it seems like this century will be the one where Earth life makes the leap from the Single-Planetary Era to the Multi-Planetary Era. This century may be the one when an Earthly species finally manages to wrest the genetic code from the forces of evolution and learns to reprogram itself. People alive today could witness the moment when biotechnology finally frees the human lifespan from the will of nature and hands it over to the will of each individual… The Human Colossus has reached an entirely new level of power—the kind of power that can overthrow 3.8-billion-year eras—positioning us on the verge of multiple tipping points that will lead to unimaginable change. And if our alien friend finds a fourth planet one day that happens to be identical to Earth in 2100, you can be pretty damn sure it’ll look nothing to him like Planet 3… It’s not that he thinks Planet 4 is definitely a bad place—it’s that he thinks it could be a bad place, and he recognizes that the generations alive today, whether they realize it or not, are the first in history to face real, hardcore existential risk… At the same time, the people alive today also are the first who can live with the actually realistic hope for a genuinely utopian future—one that defies even death and taxes. Planet 4 could be our promised land… And the outcome isn’t at the whim of chance—it’s at the whim of the Human Colossus. Planet 4 is only coming because the Colossus is building it. And whether that future is like heaven or hell depends on what the Colossus does—maybe over the next 150 years, maybe over only the next 50. Or 25… But the unfortunate thing is that the Human Colossus isn’t optimized to maximize the chances of a safe transition to the best possible Planet 4 for the most possible humans—it’s optimized to build Planet 4, in any way possible, as quickly as possible… Understanding all of this, Elon has dedicated his life to trying to influence the Human Colossus to bring its motivation more in line with the long-term interests of humans. He knows it’s not possible to rewire the Human Colossus—not unless existential risk were suddenly directly in front of each human’s face, which normally doesn’t happen until it’s already too late—so he treats the Colossus like a pet… If you want your dog to sit, you correlate sitting on command with getting a treat. For the Human Colossus, a treat is a ripe new industry simultaneously exploding in both supply and demand… Elon saw the Human Colossus dog running into traffic in the form of humanity keeping all of its eggs on one planet, despite all of those tipping points on the horizon, so he built SpaceX to learn to land a rocket, which will cut the cost of space travel by about 99% and make dedicating resources to the space industry a much tastier morsel for the Colossus. His plan with Mars isn’t to try to convince humanity that it’s a good idea to build a civilization there in order to buy life insurance for the species—it’s to create an affordable regular cargo and human transit route to Mars, knowing that once that happens, there will be enough value-creation opportunity in Mars development that the Colossus will become determined to make it happen… But to Elon, the scariest thing the Human Colossus is doing is teaching the Computer Colossus to think. To Elon, and many others, the development of superintelligent AI poses by far the greatest existential threat to humanity. It’s not that hard to see why. Intelligence gives us godlike powers over all other creatures on Earth—which has not been a fun time for the creatures. If any of their body parts are possible value creators, we have major industries processing and selling those body parts. We sometimes kill them for sport. But we’re probably the least fun all the times we’re just doing our thing, for our own reasons, with no hate in our hearts or desire to hurt anyone, and there are creatures, or ecosystems, that just happen to be in our way or in the line of fire of the side effects of what we’re doing. People like to get all mad at humanity about this, but really, we’re just doing what species do—being selfish, first and foremost… The issue for other creatures isn’t our selfishness—it’s the immense damage our selfishness can do because of the tremendous power we have over them. Power that comes from our intelligence advantage… I mean, you’ve got these two things where AlphaGo crushes these human players head-on-head, beats Lee Sedol 4 out of 5 games and now it will beat a human every game all the time, while playing the 50 best players, and beating them always, all the time. You know, that’s like one year later… What I came to realize in recent years—the last couple years—is that AI is obviously going to surpass human intelligence by a lot… There’s some risk at that point that something bad happens, something that we can’t control, that humanity can’t control after that point—either a small group of people monopolize AI power, or the AI goes rogue, or something like that. It may not, but it could… I think that the protection of the collective is important. I think it was Churchill who said, “Democracy’s the worst of all systems of government, except for all the others.” It’s fine if you have Plato’s incredible philosopher king as the king, sure. That would be fine. Now, most dictators do not turn out that way. They tend to be quite horrible… There are plenty of times in life when it’s a good strategy to take a risk in order to give yourself a chance for the best possible outcome, but when the stakes are at their absolute highest, the right move is usually to play it safe. Power is one of those times. That’s why, even though democracy essentially guarantees a certain level of mediocrity, Elon says, “I think you’re hard-pressed to find many people in the United States who, no matter what they think of any given president, would advocate for a dictatorship.” … And since Elon sees AI as the ultimate power, he sees AI development as the ultimate “play it safe” situation. Which is why his strategy for minimizing existential AI risk seems to essentially be that AI power needs to be of the people, by the people, for the people… Normally, when humanity is working on something new, it starts with the work of a few innovative pioneers. When they succeed, an industry is born and the Human Colossus jumps on board to build upon what the pioneers started, en masse… But what if the thing those pioneers were working on was a magic wand that might give whoever owned it immense, unbreakable power over everyone else—including the power to prevent anyone else from making a magic wand? That would be kinda stressful, right? … Well that’s how Elon views today’s early AI development efforts. And since he can’t stop people from trying to make a magic wand, his solution is to create an open, collaborative, transparent magic wand development lab. When a new breakthrough innovation is discovered in the lab, instead of making it a tightly-kept secret like the other magic wand companies, the lab publishes the innovation for anyone to see or borrow for their own magic-wand-making efforts… On one hand, this could have drawbacks. Bad guys are out there trying to make a magic wand too, and you really don’t want the first magic wand to end up in the hands of a bad guy. And now the bad guys’ development efforts can benefit from all of the innovations being published by the lab. This is a serious concern… But the lab also boosts the efforts of millions of other people trying to create magic wands. This generates a ton of competition for the secretive early pioneers, and it becomes less likely that any one inventor can create a magic wand long before others also do. More likely is that when the first magic wand is eventually created, there are thousands of others near completion as well—different wands, with different capabilities, made by different people, for different reasons. If we have to have magic wands on Earth, Elon thinks, let’s at least make sure they’re in the hands of a large number of people across the world—not one all-powerful sorcerer. Or as he puts it: … More broadly, a single pioneer’s magic wand would likely have been built to serve that inventor’s own needs and purposes. But by turning the future magic wand industry into a collective effort, a wide variety of needs and purposes will have a wand made for them, making it more likely that the capabilities of the world’s aggregate mass of magic wands will overarchingly represent the needs of the masses… It worked fine for Nikola Tesla and Henry Ford and the Wright Brothers and Alan Turing to jump-start revolutions by jumping way out ahead of the pack. But when you’re dealing with the invention of something unthinkably powerful, you can’t sit back and let the pioneers kick things off—it’s leaving too much to chance… AI is definitely going to vastly surpass human abilities. To the degree that it is linked to human will, particularly the sum of a large number of humans, it would be an outcome that is desired by a large number of humans, because it would be a function of their will… So now you’ve maybe got early human-level-or-higher AI superpower being made by the people, for the people—which brings down the likelihood that the world’s AI ends up in the hands of a single bad guy or a tightly-controlled monopoly… This one should be easy. Remember, the Human Colossus is creating superintelligent AI for the same reason it created cars, factory machines, and computers—to serve as an extension of itself to which it can outsource work. Cars do our walking, factory machines do our manufacturing, and computers take care of information storage, organization, and computation… Creating computers that can think will be our greatest invention yet—they’ll allow us to outsource our most important and high-impact work. Thinking is what built everything we have, so just imagine the power that will come from building ourselves a superintelligent thinking extension. And extensions of the people by definition belong to the people—they’re of the people… High-caliber AI isn’t quite like those other inventions. The rest of our technology is great at the thing it’s built to do, but in the end, it’s a mindless machine with narrow intelligence. The AI we’re trying to build will be smart, like a person—like a ridiculously smart person. It’s a fundamentally different thing than we’ve ever made before—so why would we expect normal rules to apply? … It’s always been an automatic thing that the technology we make inherently belongs to us—it’s such an obvious point that it almost seems silly to make it. But could it be that if we make something smarter than a person, it might not be so easy to control? … Because, as the human history case study suggests, when there’s something on the planet way smarter than everyone else, it can be a really bad thing for everyone else. And if AI becomes the new thing on the planet that’s way smarter than everyone else, and it turns out not to clearly belong to us—it means that it’s its own thing. Which drops us into the category of “everyone else.” … So people gaining monopolistic control of AI is its own problem—and one that OpenAI is hoping to solve. But it’s a problem that may pale in comparison to the prospect of AI being uncontrollable… This is what keeps Elon up at night. He sees it as only a matter of time before superintelligent AI rises up on this planet—and when that happens, he believes that it’s critical that we don’t end up as part of “everyone else.” … These two ideas are the two things Elon means when he refers to the wizard hat as a digital tertiary layer in our brains. The first, as we discussed, is the concept that a whole-brain interface is kind of the same thing as putting our devices in our heads—effectively making your brain the device. Like this: … Your devices give you cyborg superpowers and a window into the digital world. Your brain’s wizard hat electrode array is a new brain structure, joining your limbic system and cortex… But your limbic system, cortex, and wizard hat are just the hardware systems. When you experience your limbic system, it’s not the physical system you’re interacting with—it’s the information flow within it. It’s the activity of the physical system that bubbles up in your consciousness, making you feel angry, scared, horny, or hungry… Same thing for your cortex. The napkin wrapped around your brain stores and organizes information, but it’s the information itself that you experience when you think something, see something, hear something, or feel something. The visual cortex in itself does nothing for you—it’s the stream of photon information flowing through it that gives you the experience of having a visual cortex. When you dig in your memory to find something, you’re not searching for neurons, you’re searching for information stored in the neurons… The limbic system and cortex themselves are just gray matter. The flow of activity within the gray matter is what forms your familiar internal characters, the monkey brain and the rational human brain… It means that while what’s actually in your brain is the physical device—the electrode array itself—the component of the tertiary layer that you’ll experience and get to know as a character is the information that flows through the array… And just like the feelings and urges of the limbic system and the thoughts and chattering voice of the cortex all feel to you like parts of you—like your inner essence—the activity that flows through your wizard hat will feel like a part of you and your essence… Elon’s vision for the Wizard Era is that among the wizard hat’s many uses, one of its core purposes will be to serve as the interface between your brain and a cloud-based customized AI system. That AI system, he believes, will become as present a character in your mind as your monkey and your human characters—and it will feel like you every bit as much as the others do. He says: … But when I first heard Elon talk about this concept, it didn’t really feel right. No matter how hard I tried to get it, I kept framing the idea as something familiar—like an AI system whose voice I could hear in my head, or even one that I could think together with. But in those instances, the AI still seemed like an external system I was communicating with. It didn’t seem like me… Then I lost it. The next day, I tried to explain the epiphany to a friend and I left us both confused. I was back in “Wait, but it kind of wouldn’t really be me, it would be communicating with me” land. Since then, I’ve dipped into and out of the idea, never quite able to hold it for long. The best thing I can compare it to is having a moment when it actually makes sense that time is relative and space-time is a single fabric. For a second, it seems intuitive that time moves slower when you’re moving really fast. And then I lose it. As I typed those sentences just now, it did not seem intuitive… The idea of being AI is especially tough because it combines two mind-numbing concepts—the brain interface and the abilities it would give you, and artificial general intelligence. Humans today are simply not equipped to understand either of those things, because as imaginative as we think we are, our imaginations only really have our life experience as their toolkit, and these concepts are both totally novel. It’s like trying to imagine a color you’ve never seen… That’s why when I hear Elon talk with conviction about this stuff, I’m somewhere in between deeply believing it myself and taking his word for it. I go back and forth. But given that he’s someone who probably found space-time intuitive when he was seven, and given that he’s someone who knows how to colonize Mars, I’m inclined to listen hard to what he says… And what he says is that this is all about bandwidth. It’s obvious why bandwidth matters when it comes to making a wizard hat useful. But Elon believes that when it comes to interfacing with AI, high bandwidth isn’t just preferred, but actually fundamental to the prospect of being AI, versus simply using AI. Here he is walking me through his thoughts: … The challenge is the communication bandwidth is extremely slow, particularly output. When you’re outputting on a phone, you’re moving two thumbs very slowly. That’s crazy slow communication… If the bandwidth is too low, then your integration with AI would be very weak. Given the limits of very low bandwidth, it’s kind of pointless. The AI is just going to go by itself, because it’s too slow to talk to. The faster the communication, the more you’ll be integrated—the slower the communication, the less. And the more separate we are—the more the AI is “other”—the more likely it is to turn on us. If the AIs are all separate, and vastly more intelligent than us, how do you ensure that they don’t have optimization functions that are contrary to the best interests of humanity? … If we achieve tight symbiosis, the AI wouldn’t be “other”—it would be you and with a relationship to your cortex analogous to the relationship your cortex has with your limbic system… Elon sees communication bandwidth as the key factor in determining our level of integration with AI, and he sees that level of integration as the key factor in how we’ll fare in the AI world of our future: … We’re going to have the choice of either being left behind and being effectively useless or like a pet—you know, like a house cat or something—or eventually figuring out some way to be symbiotic and merge with AI… Without really understanding what kinds of AI will be around when we reach the age of superintelligent AI, the idea that human-AI integration will lend itself to the protection of the species makes intuitive sense. Our vulnerabilities in the AI era will come from bad people in control of AI or rogue AI not aligned with human values. In a world in which millions of people control a little piece of the world’s aggregate AI power—people who can think with AI, can defend themselves with AI, and who fundamentally understand AI because of their own integration with it—humans are less vulnerable. People will be a lot more powerful, which is scary, but like Elon said, if everyone is Superman, it’s harder for any one Superman to cause harm on a mass scale—there are lots of checks and balances. And we’re less likely to lose control of AI in general because the AI on the planet will be so widely distributed and varied in its goals… When I thought about all of this, one reservation I had was whether a whole-brain interface would be enough of a change to make integration likely. I brought this up with Elon, noting that there would still be a vast difference between our thinking speed and a computer’s thinking speed. He said: … Yes, but increasing bandwidth by orders of magnitude would make it better. And it’s directionally correct. Does it solve all problems? No. But is it directionally correct? Yes. If you’re going to go in some direction, well, why would you go in any direction other than this? … He started Neuralink to accelerate our pace into the Wizard Era—into a world where he says that “everyone who wants to have this AI extension of themselves could have one, so there would be billions of individual human-AI symbiotes who, collectively, make decisions about the future.” A world where AI really could be of the people, by the people, for the people… I’ll guess that right now, some part of you believes this insane world we’ve been living in for the past 38,000 words could really maybe be the future—and another part of you refuses to believe it. I’ve got a little of both of those going on too… But the insanity part of it shouldn’t be the reason it’s hard to believe. Remember—George Washington died when he saw 2017. And our future will be unfathomably shocking to us. The only difference is that things are moving even faster now than they were in George’s time… The concept of being blown away by the future speaks to the magic of our collective intelligence—but it also speaks to the naivety of our intuition. Our minds evolved in a time when progress moved at a snail’s pace, so that’s what our hardware is calibrated to. And if we don’t actively override our intuition—the part of us that reads about a future this outlandish and refuses to believe it’s possible—we’re living in denial… The reality is that we’re whizzing down a very intense road to a very intense place, and no one knows what it’ll be like when we get there. A lot of people find it scary to think about, but I think it’s exciting. Because of when we happened to be born, instead of just living in a normal world like normal people, we’re living inside of a thriller movie. Some people take this information and decide to be like Elon, doing whatever they can to help the movie have a happy ending—and thank god they do. Because I’d rather just be a gawking member of the audience, watching the movie from the edge of my seat and rooting for the good guys… Either way, I think it’s good to climb a tree from time to time to look out at the view and remind ourselves what a time this is to be alive. And there are a lot of trees around here. Meet you at another one sometime soon…

[17] (PDF) Acupuncture modulates the limbic system and subcortical gray str ...
https://www.academia.edu/9996420/Acupuncture_modulates_the_limbic_system_and_subcortical_gray_structures_of_the_human_brain_Evidence_from_fMRI_studies_in_normal_subjects

[18] https://www.brainfacts.org/3d-brain
https://www.brainfacts.org/3d-brain

[19] https://www.forbes.com/sites/greatspeculations/2018/05/10/dont-let-you
https://www.forbes.com/sites/greatspeculations/2018/05/10/dont-let-your-hippocampus-stop-you-from-being-a-successful-investor/
The hippocampus is a small organ located within the brain's medial temporal lobe and forms an important part of the limbic system, the region that regulates emotions. Psychologists and neuroscientists generally agree that the hippocampus plays an important role in the formation and indexing of new memories about experienced events. Part of this function is hippocampal involvement in the detection of new events, places and stimuli. This is partly why returning to a location where an emotional event occurred may evoke that emotion. There is a deep emotional connection between episodic memories and places. The hippocampus is responsible for processing of long-term memory and emotional responses. We would not even be able to remember where our house is without the work of the hippocampus. The hippocampus also encodes emotional context from the amygdala… When you think of the amygdala, you should think of one word, fear. The amygdala is the reason we are afraid of things outside our control. It also controls the way we react to certain stimuli, or an event that causes an emotion, that we see as potentially threatening or dangerous. The amygdala is a limbic system structure that is involved in many of our emotions and motivations, particularly those related to survival. The amygdala is involved in several functions of the body including fear responses, emotional responses, hormonal secretions; arousal, and memory… The amygdala is involved in the processing of emotions triggering the fight or flight response.During the fight-or-flight response, the amygdala takes over. The structure causes the adrenal gland to release epinephrine into the bloodstream, along with other hormones like cortisol; signals the heart to pump harder, increasing blood pressure; opening airways in the lungs; narrowing blood vessels in the skin and intestine to increase blood flow to major muscle groups; and performing other functions to enable the body to fight or run when encountering a perceived threat.​ Many bodily functions take a back seat during the fight-or-flight response… The term perceived threat makes an important distinction and brings up a critical point to remember. As in the case of chronic stress, the body's stress response is triggered repeatedly on a daily basis in response to actual physical and psychological threats as well as perceived psychological threats. As a result, the body can become exhausted, and the overabundance of epinephrine and cortisol can result in lowered immunity and other health problems. Hyperactivity of the amygdala has been associated with fear and anxiety disorders… Fear is an emotional and physical response to danger. Anxiety is a psychological response to something perceived as dangerous. Anxiety can lead to panic attacks that occur when the amygdala sends signals that a person is in danger, even when there is no real threat… In February, markets were sitting at the top of a bull run that began years ago. Suddenly, the release of some macro-economic data sparked fears of inflation and higher bond rates. This fear caused a panic that lead to the S&P 500 dropping from its high at 2872 to 2581, a 10% drop. Markets had begun to recover into March when the “f” word reared its ugly head again, this time in the context of a trade war with China. What changed in the market? The companies were still making as much money. They were still paying the same dividends to shareholders. The difference was fear and its ability to cause panic selling… Some investors have positioned their portfolios defensively for a big portion of this nine-year post Financial Crisis bull market. Some have been afraid that a recession is “just around the corner” allowing their amygdala to rule the day and missing opportunities for years. A little bit of research might have helped these investors have confidence in a long-term strategic portfolio that does not rely on market timing. For example, according to Ned Davis Research, the stock market has declined 5-10% 77 times in the last 70 years. It is practically an annual event. On average, the recover from these levels has taken one month, assuming you did not get scared out of the market… What would your hippocampus say? The hippocampus and amygdala work in concert to consolidate our emotions and long-term memories. This process is critical for evaluating information in order to respond appropriately to situations. However, the amygdala has a trump card! Whenever a possible fight or flight emotion is perceived, the brain’s nutrients, blood flow, and oxygen are directed to the amygdala. This saps the other parts of the brain clouding creativity and rationality. The brain becomes less concerned with painting the next Mona Lisa when it perceives a possible attack by a lion. Remember this when viewing the next “crisis” on the news, or the next irrational drop in the stock market. Is this really a crisis? Are you being manipulated? What would your creative, rational hippocampus say? … Title: Don't Let Your Hippocampus Stop You From Being A Successful Investor Author: David Thomas URL: //www.forbes.com/sites/greatspeculations/2018/05/10/dont-let-your-hippocampus-stop-you-from-being-a-successful-investor/ …

[20] https://www.google.com/patents/WO2005009390A3%3Fcl%3Den
https://www.google.com/patents/WO2005009390A3%3Fcl%3Den

[21] Our Three Brains - The Rational Brain | Interaction Design Founda ...
https://www.interaction-design.org/literature/article/our-three-brains-the-rational-brain

The neomammalian brain is thought to be the last major development in the evolution of the human brain, due to its being the outermost structure and imaging studies which have shown this region is implicated in higher-order thinking. Functions of the neomammalian brain include analysis, sensory processing, learning, and memory, motor control, decision-making, reasoning, and problem-solving. The primary and overarching responsibility of the neocortex is to determine what is going on in the outside world. This function has a number of components, such as moving our sensory organs so they are in the best possible position for the receipt of perceptual information, processing the stimulus, storing an accurate representation, and mentally manipulating this representation so as to determine the best possible response…

[22] Limbic system: structure and function | Emotion (video) |
https://www.khanacademy.org/science/health-and-medicine/executive-systems-of-the-brain/emotion-lesson/v/emotions-limbic-system

[23] How emotions may impact tumor growth
https://www.medicalnewstoday.com/articles/322497.php
So, Prof. Rolls and team decided to conduct a study to explore these mechanisms and learn more about how emotions in the brain can influence the way in which the immune system responds to cancer… "They do so by blocking the immune response and creating an environment that is beneficial to growth," she explains. Even minor distress puts you at risk of chronic disease Even minor distress puts you at risk of chronic disease A new study finds that even minor psychological distress can harm your health in the long run. Read now … But, as the researchers explain in the newly published paper, existing studies have suggested that activity in the brain's reward system can help regulate the way in which the immune system functions… Moreover, the researchers explain, once the immune system is activated in this way, it also appears to create a more resilient "memory" of the foreign agents to which it has been exposed, which allows it to respond more efficiently to those pathogens… Though this study is preclinical, and it only looked at the effects of VTA stimulation in two types of cancer using mouse models, the researchers believe that their findings might influence the way in which healthcare practitioners view the role of mental state and emotional well-being in both the development and treatment of diseases such as cancer… "Understanding the brain's influence on the immune system," explains study co-author Prof. Fahed Hakim, "and its ability to fight cancer will enable us to use this mechanism in medical treatments." … "Different people react differently, and we'll be able to take advantage of this tremendous potential for healing only if we gain a thorough understanding of the mechanisms." … © 2004-2019 All rights reserved. MNT is the registered trade mark of Healthline Media. Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a healthcare professional… 2019 Healthline Media UK Ltd. All rights reserved. MNT is the registered trade mark of Healthline Media. Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a healthcare professional…

[24] Cognitive Function Article, Neuroscience Information, Mapping Brain Fa ...
https://www.nationalgeographic.com/science/health-and-human-body/human-body/mind-brain/
Though absurdly unscientific even for its time, phrenology was remarkably prescient—up to a point. In the past decade especially, advanced technologies for capturing a snapshot of the brain in action have confirmed that discrete functions occur in specific locations. The neural "address" where you remember a phone number, for instance, is different from the one where you remember a face, and recalling a famous face involves different circuits than remembering your best friend's… Yet it is increasingly clear that cognitive functions cannot be pinned to spots on the brain like towns on a map. A given mental task may involve a complicated web of circuits, which interact in varying degrees with others throughout the brain—not like the parts in a machine, but like the instruments in a symphony orchestra combining their tenor, volume, and resonance to create a particular musical effect… Corina Alamillo is lying on her right side in an operating room in the UCLA Medical Center. There is a pillow tucked beneath her cheek and a steel scaffold screwed into her forehead to keep her head perfectly still. A medical assistant in her late 20s, she has dark brown eyes, full eyebrows, and a round, open face… On the other side of a tent of sterile blue paper, two surgeons are hard at work on a saucer-size portion of Corina's brain, which gleams like mother-of-pearl and pulsates gently to the rhythm of her heartbeat. On the brain's surface a filigree of arteries feeds blood to the region under the surgeons' urgent scrutiny: a part of her left frontal lobe critical to the production of spoken language. Nearby, the dark, dull edge of a tumor threatens like an approaching squall. The surgeons need to remove the tumor without taking away Corina's ability to speak along with it. To do that, they need her to be conscious and responsive through the beginning of the operation process. They anesthetized her to remove a piece of her scalp and skull and fold back a protective membrane underneath. Now they can touch her brain, which has no pain receptors… "Wake up, Sweetie," says another doctor, sitting in a chair under the paper tent with Corina. "Everything is going fine. Can you say something for me?" Corina's lips move as she tries to answer through the clearing fog of anesthesia… Corina's brain is the most beautiful object that exists, even more beautiful than Corina herself, for it allows her to perceive beauty, have a self, and know about existence in the first place. But how does mere matter like this make a mind? How does this mound of meat bring into being her comprehension of the doctor's question, and her ability to respond to it? Through what sublime process does electrochemical energy become her hope that the operation will go well, or her fear for her two children if it should not? How does it bring into being her memory of clutching tight to her mother's hand in the hospital room half an hour ago—or 20 years before in a store parking lot? These are hardly new questions. In the past few years, however, powerful new techniques for visualizing the sources of thought, emotion, and behavior are revolutionizing the way we understand the nature of the brain and the mind it creates… The opening in Corina's skull provides a glimpse into the history of the mind's attempt to understand its physical being. The patch of frontal lobe adjacent to her tumor is called Broca's area, named after the 19th-century French anatomist Paul Broca, one of the first scientists to offer definitive evidence that—while there is no single seat of thought—specific cognitive traits and functions are processed in localized regions of the brain… Broca defined the area named for him by studying a stroke victim. In 1861 Broca met a patient who had been given the nickname "Tan," because "tan" was the only syllable he had been able to utter for the past 21 years. When Tan died, an autopsy revealed that a portion of his left frontal lobe about the size of a golf ball had been liquefied by a massive stroke years before… A few years later German neurologist Carl Wernicke identified a second language center farther back, in the brain's left temporal lobe. Patients with strokes or other damage to Wernicke's area are able to talk freely, but they cannot comprehend language, and nothing they say makes any sense… Until recently, damaged brains were the best source of information about the origins of normal cognitive function. A World War I soldier with a small-bore bullet wound in the back of his head might also, for instance, have a vacancy in his field of vision caused by a corresponding injury in his visual cortex. A stroke victim might see noses, eyes, and mouths, but not be able to put them together into a face, revealing that facial recognition is a discrete mental faculty carried out in the region of cortex destroyed by the stroke. In the 1950s American neurosurgeon Wilder Penfield used an electrode to directly stimulate spots on the brains of hundreds of epilepsy patients while they were awake during operations. Penfield discovered that each part of the body was clearly mapped out in a strip of cortex on the brain's opposite side. A person's right foot, for example, responded to a mild shock delivered to a point in the left motor cortex adjacent to one that would produce a similar response in the patient's right leg. Stimulating other locations on the cortical surface might elicit a specific taste, a vivid childhood memory, or a fragment of a long-forgotten tune… The two surgeons in the UCLA operating room are now about to apply Penfield's technique to Corina's Broca's area. They're already in the general neighborhood, but before removing her tumor they must find the exact address for Corina's specific language abilities. The fact that she is bilingual requires even greater care than normal: The neural territories governing her English and Spanish may be adjacent, or—more likely, since she learned both languages at an early age—may at least partially overlap. Susan Bookheimer, the neuropsychologist communicating with Corina under the paper tent, shows her a picture on a card from a stack. At the same time, chief surgeon Linda Liau touches her brain with an electrode, delivering a mild shock. Corina feels nothing, but function is momentarily inhibited in that spot… "Good!" says Bookheimer, flipping through her stack of cards. The electrode is not touching a point critical to language. Meanwhile Liau moves the electrode a fraction of an inch. "And this one?" … Corina hesitates. "¿Bicicleta?" she says. But it is not a bicycle; it is a pair of antlers. When Corina makes a mistake or struggles to identify a picture of some simple object, the doctors know they have hit upon a critical area, and they label the spot with a square of sterile paper, like a tiny Post-it note… When Corina answers "green," or "dog," the precise pattern of neural circuits firing in her Broca's area and surrounding tissue is captured by the camera and sent to a monitor in the corner of the room. From there the image is instantly uploaded to a supercomputer in UCLA's Laboratory of Neuro Imaging, a few floors above. There it joins 50,000 other scans collected from over 10,000 individuals, using an array of imaging technologies. Thus Corina becomes one galaxy in an expanding universe of new information on the human brain… "Every person's brain is as unique as their face," says Toga, who directs the Laboratory of Neuro Imaging and is observing the operation today from above his surgical mask. "All this stuff is sliding around, and we don't know all the rules. But by studying thousands of people, we may be able to learn more of them, which will tell us how the brain is organized." … Four weeks after conception, the embryo that would become Corina was producing half a million neurons every minute. Over the next several weeks these cells migrated to the brain, to specific destinations determined by genetic cues and interactions with neighboring neurons. During the first and second trimesters of her mother's pregnancy the neurons began to reach tentacles out to each other, establishing synapses—points of contact—at a rate of two million a second. Three months before she was born, Corina possessed more brain cells than she ever would again: an overwrought jungle of connections. There were far more than she needed as a fetus in the cognitively unchallenging womb—far more, even, than she would need as an adult… Then, just weeks away from birth, the trend reversed. Groups of neurons competed with each other to recruit other neurons into expanding circuits with specific functions. Those that lost died off in a pruning process scientists call "neural Darwinism." … The circuits that survived were already partly tuned to the world beyond. At birth, she was already predisposed to the sound of her mother's voice over that of strangers; to the cadence of nursery rhymes she might have overheard in the womb; and perhaps to the tastes of her mother's Mexican cuisine, which she had sampled generously in the amniotic fluid. The last of her senses to develop fully was her vision. Even so, she clearly recognized her mother's face at just two days old… For the next 18 months, Corina was a learning machine. While older brains need some sort of context for learning—a reason, such as a reward, to pay attention to one stimulus over another—baby brains soak up everything coming through their senses… If there is one part of the brain where the "self" part of Corina's mind began, it would be in the prefrontal cortex—a region just behind her forehead that extends to about her ears. By the age of two or so, circuits here have started to develop. Before the prefrontal cortex comes on line, a child with a smudge on her cheek will try to wipe the spot off her reflection in a mirror, rather than understand that the image in the mirror is herself, and wipe her own cheek… But as scientists are learning about all higher cognitive functions, they're discovering that a sense of self is not a discrete part of the mind that resides in a particular location, like the carburetor in a car, or that matures all at once, like a flower blooming. It may involve various regions and circuits in the brain, depending on what specific sense one is talking about, and the circuits may develop at different times… So while Corina may have recognized herself in a mirror before she was three years old, it might have been another year before she understood that the self she saw in the mirror persists intact through time. In studies conducted by Daniel Povinelli and his colleagues at the University of Louisiana at Lafayette, young children were videotaped playing a game, during which an experimenter secretly put a large sticker in their hair. When shown the videotape a few minutes later, most children over the age of three reached up to their own hair to remove the sticker, demonstrating that they understood the self in the video was the same as the one in the present moment. Younger children did not make the connection… If Corina had a sticker caught in her hair when she was three, she doesn't remember it. Her first memory is of the thrill of going to the store with her mother to pick out a special dress, pink and lacy. She was four years old. She does not recall anything earlier because her hippocampus, part of the limbic system deep in the brain that stores long-term memories, had not yet matured… That doesn't mean earlier memories don't exist in Corina's mind. Because her father left when she was just two, she can't consciously remember how he got drunk sometimes and abused her mother. But the emotions associated with the memory might be stored in her amygdala, another structure in the brain's limbic system that may be functional as early as birth. While highly emotional memories etched in the amygdala may not be accessible to the conscious mind, they might still influence the way we act and feel beyond our awareness… Different areas of the brain develop in various ways at different rates into early adulthood. Certainly the pruning and shaping of Corina's brain during her early months as a learning machine were critical. But according to recent imaging studies of children conducted over a period of years at UCLA and the National Institute of Mental Health in Bethesda, Maryland, a second growth spurt in gray matter occurs just before puberty… The last area of the brain to reach maturity is the prefrontal cortex, where the so-called executive brain resides—where we make social judgments, weigh alternatives, plan for the future, and hold our behavior in check… "The executive brain doesn't hit adult levels until the age of 25," says Jay Giedd of the National Institute of Mental Health, one of the lead scientists on the neuroimaging studies. "At puberty, you have adult passions, sex drive, energy, and emotion, but the reining in doesn't happen until much later." It is no wonder, perhaps, that teenagers seem to lack good judgment or the ability to restrain impulses. "We can vote at 18," says Giedd, "and drive a car. But you can't rent a car until you're 25. In terms of brain anatomy, the only ones who have it right are the car-rental people." … Gray-matter maturity, however, does not signal the end of mental change. Even now, Corina's brain is still very much a work in progress. If there is a single theme that has dominated the past decade of neurological research, it is the growing appreciation of the brain's plasticity—its ability to reshape and reorganize itself through adulthood. Blind people who read Braille show a remarkable increase in the size of the region of their somatosensory cortex—a region on the side of the brain that processes the sense of touch—devoted to their right index finger. Violin players show an analogous spread of the somatosensory region associated with the fingers of their left hand, which move about the neck of the instrument playing notes, as opposed to those of their right hand, which merely holds the bow… "Ten years ago most neuroscientists saw the brain as a kind of computer, developing fixed functions early," says Michael Merzenich of the University of California, San Francisco, a pioneer in understanding brain plasticity. "What we now appreciate is that the brain is continually revising itself throughout life." … While the brain's plasticity begins to degrade in later life, it may never be too late to teach an old brain new tricks. According to preliminary studies in Merzenich's lab, even the memories of pre-senile individuals in their 60s and 70s can, with focused training, be dramatically rejuvenated. Plasticity does have limits, however. If certain critical areas of the cortex—Broca's area, for instance—are destroyed by stroke or tumor, the patient will probably never recover the function once performed by the now silent circuits… Which brings us back to Corina today. Her tumor has already demolished an egg-size portion of her left frontal lobe containing circuits important to personality, planning, and drive. Fortunately, the brain has some built-in redundancy in these higher functions, and her family has not noticed any change in her personality: The corresponding region of her right frontal lobe is probably shouldering much of the extra load… But the tumor must be removed now as quickly as possible. The scientists have finished the optical intrinsic imaging of her brain, plus another experimental scanning technique using infrared light. The camera's boom has been rolled back… The operating room empties of all but the personnel critical to the operation itself. Corina is very tired, but she must stay awake just a little longer. Using an electronic scalpel, Dr. Liau carefully begins to cut into the brain flesh at the border between the tumor and Corina's Broca's area. Under the tent, Dr. Bookheimer flashes more cards in front of her face… As the scalpel cuts deeper, Liau's eyes are tense above her surgical mask. She must excise every scrap of cancerous tissue. Yet one slip, and the damage cannot be undone. Once the cut along the border is finished, Corina's consciousness is no longer needed, and she can rest… "Good," says Liau. "Let's put her back to sleep." An anesthesiologist makes the required adjustment to the chemical mix trickling through Corina's IV. I walk around to where I can see her face… Every day, Glen McNeil spends six or seven hours buzzing about the streets of London on his motorbike with a map clipped to the handlebars. McNeil, 28, is a “knowledge boy,” engaged in the years-long memory training required to earn his green badge and become a licensed London taxi driver, like his father… If McNeill fulfills his dream, his brain may be the bigger for it, at least in one part. The hippocampus, a seahorse-shaped structure that is part of the brain's limbic system, is critical to many functions of memory and learning, including processing spatial relationships in the environment. An MRI study published in 2000 by scientists at University College, London, showed that in London taxi drivers the rear portion of the hippocampus was enlarged compared with those of control subjects, confounding the long-held notion that the adult human brain cannot grow. But the bonus in brain tissue may not have come free of charge. On average, the front portion of the hippocampus was smaller than normal in the taxi drivers, suggesting that the effort to build an increasingly detailed mental map of the city had recruited neighboring regions to the cause… If the hippocampus can grow in human adults, what about other parts of the brain? According to a recent study in Germany, learning how to juggle for three months resulted in an increase in the amount of gray matter in two areas involved in visual and motor activity. When the newly trained jugglers stopped practicing, however, these regions shrank back. Furthermore, neither the driver study nor the juggler study could discern whether the growth in brain volume was due to the reorganization of existing circuits, an increased number of neural connections, or most intriguingly, the birth of actual new brain cells—an idea thought preposterous until recently. In 1998 Fred H. Gage of the SaIk Institute in La JoIIa, California, showed that new cells can indeed grow in the adult human hippocampus. Gage believes that stem cells, capable of developing into functioning new neurons, may exist elsewhere in the brain. Better understanding of such nerve regeneration could provide hope for the treatment of Alzheimer's disease, Parkinson's disease, and a host of other degenerative brain disorders… Meanwhile, Glen McNeilI has more work to do with his hippocampus. He has to pass three sets of examinations testing his knowledge of London streets—and then prove familiarity with the surrounding towns… "Emotion is the least plastic part of the brain," says Ekman. But we can learn to manage our emotions better. For instance, the shorter the time between the onset of an emotion and when we become consciously aware of it—what Ekman calls the refractory period—the more likely we are to double-check to see if the emotion is appropriate to the situation. One way to shorten the refractory period is to be aware of what triggers our various emotions… It's a jungle out there, or at least it used to be. The prehistoric environment that shaped our brains sizzled with snakes, growling beasts, swooping birds, and other natural perils. Individuals who retreated spontaneously from such threats survived, while those who cogitated—maybe it's a friendly snake, but why is it coiling up like that?—did not live long enough to pass on their genes… In a series of studies at the University of Wisconsin-Madison in the 1980s, researchers tested the question by comparing lab-raised monkeys with monkeys born in the wild. Labraised monkeys with no previous fear of snakes began to show fear after watching wild-born monkeys, both live and in videotapes, show fear of snakes. But when videos were manipulated so that wild-born monkeys appeared to be afraid of flowers, lab-raised monkeys watching them didn't take the cue. It seems likely that there is indeed, etched into the primate brain, a predisposition to dread natural phenomena that can hurt us, but no predisposition to learn to fear something that will not. But the predisposition requires social experience to be activated. As the lab-raised monkeys learned fear of snakes from other monkeys, the baby stands a good chance of acquiring a fear of snakes after watching other humans… In more recent research, scientists have traced the neural pathways of fear to a small, almond-shaped structure in the brain's emotional system called the amygdala. It appears to translate the perception of danger into action in two ways… Our cortex is constantly bombarded with information from our eyes, ears, and other sensory organs. One route for this pipeline sends a torrent of detailed, refined information from high-level cortical regions to the amygdala, which turbocharges the processing of fearful or other emotional stimuli at the expense of less urgent information. If you're driving and listening to the news on the radio when the driver in front of you taps the brakes, your attention will quickly drop off the news report and signal your foot to move to the brake pedal. A second, even faster pathway sends crude information from the senses through subcortical regions directly to the amygdala, bypassing the cortex altogether. If the car in front makes a full-fledged panic stop, this more primitive pathway signals you to slam on the brakes—even before the information reaches the cortical regions that make you conscious of your actions. The milliseconds' head start on your reaction may be enough to mean the difference between life and death… Fifteen-year-old Tito Mukhopadhyay squats beside his mother on his bed, rocking, his hands flapping wildly. The gestures are typical of a severely autistic individual, as are his avoidance of eye contact and his unintelligible grunts and moans. But Tito is far from inarticulate. A visitor asks him why he is moving about so much… Initially diagnosed as mentally retarded, he was dragged from one doctor to another in his native India by a mother desperate to find the cause of her son's abnormal behavior and language impairment. Through relentless, sometimes unorthodox, training she broke through the barrier of silence, teaching Tito to add and subtract, to enjoy literature, and eventually to communicate by writing, at first by tying a pencil to his hand. Because of her efforts Tito, rare among low-functioning autistics, can describe with powerful clarity what the condition feels like from the inside… "Tito's remarkable achievements haven't overcome his autism," says Michael Merzenich, a neuroscientist at the University of California, San Francisco, who has studied Tito. "There is still chaos occurring in his brain." Where does that chaos come from? There is no doubt that genes play a role in at least some forms of the disorder. Also, infants who later develop autism often undergo a period of abnormal rapid brain growth in the first year of life, which may be related to an overproduction of cells that carry nerve impulses in the brain's white matter… Researchers Chris and Uta Frith at University College in London have pinpointed a suite of structures—one above the eyes, another near the ear, and a third high up on the sides of the brain—that allow us to infer what others are thinking and relate to people accordingly. These regions appear to be less active in individuals with autism and Asperger's syndrome, a milder form of the disorder. But other parts of the brain may also be involved, including the amygdala and the hippocampus. It is doubtful that a disorder with such a broad spectrum of symptoms and pathologies has any single cause… Music is native to the human mind. There is not a culture on Earth that does not have it, and our brains are wired to apprehend and be moved by its magic. By contrast, absolute or perfect pitch—the ability to identify a specific musical tone without hearing it in relation to another one—is an exceedingly rare gift, found in as few as one in 10,000 individuals in Western societies… People who possess the trait can identify the sound of an E flat or G sharp as effortlessly as anyone else can see that a fire engine is red or the sky is blue. Not surprisingly, it is more common among musicians. Mozart had it, and so did Beethoven. But what accounts for this peculiar faculty? … Some research suggests the phenomenon may not be so unusual after all. Investigators at the University of California, San Diego, found that many people who speak tonal languages, such as Mandarin Chinese and Vietnamese, possess a form of absolute pitch, speaking words and repeating them days later at the same pitch. Another study found that 7 percent of non-Asian freshmen at the Eastman School of Music in Rochester, New York, were endowed with absolute pitch, as opposed to fully 63 percent of their Asian counterparts at the Central Conservatory of Music in Beijing… But the relationship between absolute pitch and language cannot be the whole story. Not all tonal language speakers have absolute pitch, and not all absolute pitch possessors speak tonal languages. In Japan the trait is relatively common compared with the West, and Japanese is not a tonal language. Perhaps a genetic predisposition for absolute pitch is more common among Asian populations. But a more likely explanation for its prevalence in Japan may be the value the culture places on early music training, exemplified by these young violinists undergoing Suzuki Method training… What goes on inside a baby's head? Infants cannot communicate their thoughts directly, of course, nor are they likely to lie still in the earsplitting confinement of an MRI machine long enough for researchers to map activity in their brains. At Babylab, part of the Centre for Brain and Cognitive Development at Birkbeck, University of London, researcher Jordy Kaufman takes a direct route to reading a baby's mind… Traditional behavioral studies have implied that infants lack a sense of object permanence: When an object they've been looking at is suddenly hidden from view, they behave as if the object no longer exists. But Babylab's high-tech hairnet records a burst of activity in babies' right temporal lobes as they watch the train disappear, similar to activity measured in adults who are asked to keep an unseen object in mind. And when the tunnel is lifted to reveal no train inside—a violation of object permanence—the electrical activity spikes upward, suggesting that the babies are trying to maintain a mental representation of the train in the face of visual evidence to the contrary… Does this mean that object permanence is prewired in the brain? Perhaps. But Kaufman prefers to see the development of mind as a fecund interaction between nature and nurture, as an infant's innate predispositions guide it to seek out experience that in turn nourishes and tunes specialized neural networks… A predisposition to look at faces, for instance, seems to be innate, involving primitive brain regions. But Babylab's Hanife Halit has demonstrated that regions in the higher level temporal cortex become more specialized in facial recognition through the first year of life, at first responding to upright and upside-down monkey and human faces, and finally just to upright human faces. Normal babies also prefer faces that are looking back at them, while autistic children do not. Halit speculates that without an initial predisposition for engaging faces, a baby's brain might fail to be enriched by the social interactions that guide normal development—leading to the wholesale indifference to social stimuli that is one of the hallmarks of autism… As recently as the late 1980s the human brain was considered to be a sort of biological computer that, as one scientist put it, "secretes thoughts the way kidneys secrete urine." We now know that the brain is much more malleable and fluidly organized than the analogy to computer hardware suggests, and that it changes with every perception and every action… Over the past decade compelling evidence for neuroplasticity has come from studies of the blind by Alvaro Pascual-Leone, now a professor of neurology at Harvard University and Boston's Beth Israel hospital… Could it be that in adult blind people, new nerve connections were reaching out across the brain to occupy neural real estate left vacant by the lack of input from their sightless eyes? Pascual-Leone tests that notion by blindfolding sighted individuals for five days. After as few as two days, fMRI scans showed bursts of activity in their visual cortex when they performed tasks with their fingers, or even when they listened to tones or words. This was far too short a time for any nerve connections to grow from the touch and hearing regions of the cortex to the area processing sight. And after just a few hours with the blindfold removed, the visual cortex again responded only to input from the eyes… So what accounts for this sudden ability of the brain to "see" with input from the fingers and ears? Pascual-Leone suggests the connections from these senses to the visual cortex may already be there but remain unused so long as the eyes are doing their job. When the eyes shut down, the next best way of getting the same information springs into action… "It's provocative, but we're arguing that the brain may not be organized into sensory modalities at all," he says. What neuroscientists have been calling the visual cortex for the past century might not be devoted exclusively to the eyes, but should more accurately be defined as the area of the brain best able to discriminate spatial relationships—and it will grab whatever input is available to perform that task… On any given morning Alice Flaherty, a neurologist at Massachusetts General Hospital in Boston, is writing at her computer by 4:30 a.m. During the day she may also write on scrap paper, toilet paper, her surgical scrubs, and if nothing else is handy, on her own skin. Some of her best ideas come when she's in the shower, so she keeps a waxed pencil there and writes on the walls. She also has a pen attached to her bicycle, just in case the muse hits her in mid-pedal stroke… These days Flaherty's writing obsession is as much pleasure as compulsion. But it grew out of the painful loss she experienced in 1998 at the deaths of her prematurely born twin boys. Already prolific, Flaherty developed a full-blown case of hypergraphia, a manic disorder characterized by an irrepressible urge to write—and write, and write. Her writing increased 20-fold. The nagging need to write something down would wake her up in the middle of the night to scribble in the dark, surrounding herself with a litter of scrawled notes. A second episode followed the birth of twin daughters, now healthy five-year-olds… Nevertheless, the key role of the temporal lobe in hypergraphia may offer a window into the neural underpinnings of literary creativity, and creativity in general. According to popular wisdom, the right hemisphere of the brain is more creative, while the left brain is more logical and objective. While there is some basis for this belief, it is certainly an oversimplification. As Flaherty discusses in her book The Midnight Disease: The Drive to Write, Writer's Block, and the Creative Brain, more important to creativity may be the connections through the limbic system—the more primitive, emotional part of the brain—between the temporal lobes on the sides of the brain and the frontal lobes behind the forehead. While the frontal lobes may be important for providing the judgment and flexibility of thought that underlies talent, structures in the temporal lobes and limbic system supply drive and motivation, which Flaherty believes are more important parts of the creative equation than talent itself. This applies not only to writing, but to all kinds of creative activity… "To be a truly creative chess player," she says, "probably just loving the game and playing it ten hours a day may be more important than having some special pattern recognition ability in your brain." … For 2,500 years Buddhists have employed strict training techniques to guide their mental state away from destructive emotions and toward a more compassionate, happier frame of being. Spurred by the cascade of new evidence for the brain's plasticity, Western neuroscientists have taken a keen interest. Can meditation literally change the mind? … For the past several years Richard Davidson and his colleagues at the University of Wisconsin-Madison have been studying brain activity in Tibetan monks, both in meditative and non-meditative states. Davidson's group had shown earlier that people who are inclined to fall prey to negative emotions displayed a pattern of persistent activity in regions of their right prefrontal cortex. In those with more positive temperaments the activity occurred in the left prefrontal cortex instead. When Davidson ran the experiment on a senior Tibetan lama skilled in meditation, the lama's baseline of activity proved to be much farther to the left of anyone previously tested. Judging from this one study, at least, he was quantifiably the happiest man in the world… Davidson recently tested the prefrontal activity in some volunteers from a high-tech company in Wisconsin. One group of volunteers then received eight weeks of training in meditation, while a control group did not. All the participants also received flu shots… By the end of the study, those who had meditated showed a pronounced shift in brain activity toward the left, "happier," frontal cortex. The meditators also showed a healthier immune response to the flu shot, suggesting that the training affected the body's health as well as the mind's…

[25] Differences in frontal and limbic brain activation in a small sample o ...
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5145909/

Although we originally selected twin pairs discordant on stress during adolescence, we found that those who experienced stress during this period were also more likely to have an onset or additional stressful experiences during childhood. Therefore, we refer to our sample as having stress during development and cannot rule out the potential effects of stress earlier in life. Selection was, however, focused on events that had an onset in the later years of childhood and that continued into adolescence. In general, MZ twins may be more likely to have discordant differences in the later years and concordant experiences prenatally and earlier in childhood. Although not conclusively, this research suggests that it is important to examine other developmental time points in addition to early life events as stress during preadolescence and adolescence may be more consistent with the effects demonstrated in this paper. Additionally, it is important to consider how stress earlier in development influences how stress is experienced in adulthood, as we had limited power to detect smaller effects. Future research will examine developmental time points more systematically as well as developmental influences related to structural alterations… This research was supported by National Institute of Health grants NIMH P60 DA0111015 and T32MH15442, Developmental Psychobiology Endowment Fund-51223, and Renew DU Post-Doctoral Fellowship…

[26] The Reptilian Brain: 7 Ways to Engage Your Customer's Inner Lizar ...
https://www.neurosciencemarketing.com/blog/articles/reptilian-brain-2.htm
The reptilian brain is more concerned with avoiding pain as a means of survival, than it is with gaining pleasure. As a result, talking about the direct benefits of your product will not immediately grab people at first… What you can do: Tap into exactly what the pain point is of your consumer. Then, in your value proposition, make sure that you have incorporated how you plan to alleviate that pain… Uber knows that it is a consumer pain point to have to schedule and wait for rides. They make sure to tell you that you can get a ride on-demand and it’s easy to schedule with an app. You can also see that this woman is happy with the fact that she has a ride… Within seconds, the reptilian brain wants to know what you plan to do for it. Make sure to make this extremely apparent in your proposition or the consumer will not be interested… Contrast is understood by the reptilian brain extremely easily. Easily understood messages will be more likely to be rewarded with attention. It will also speed up the decision making process… The reptilian brain only understands a few words at most. The optic nerve goes directly to the reptilian brain, and so it is primarily influenced by visual images. Since the reptilian area is the rest of the brain’s attention gate-keeper, this means you’ve got to be creative with how you communicate in order to persuade the reptilian portion to invest the rest of the brain’s energy on you… What you can do: Use simple and short sentences if you need to use words. Focus on imagery that demonstrates the value you are proposing in a way that feels real, concrete, and/or familiar… Assume that your consumer will be skeptical in your claims, and that you need to prove it to them by providing evidence. Help the consumer to visualize what you are trying to say and prove it to them… Show the customer that there will be more value than cost. If you are communicating about your product in person or on camera to the consumer, use props wherever you can to help them visualize what you are saying… Customer testimonials are a great source of proof. It shows the reptilian brain, which can only perceive the present, what has happened in the past. It is more likely to trust your claim of the future if you have proof of what has already happened… Data can sometimes be helpful, though it’s important to make your data visual to immediately grab attention. The reptilian brain is not responsible for calculations and so you’ve got to show it what you are trying to say… Since the reptilian brain’s main focus is survival, it will be incredibly alert when a change occurs in order to evaluate danger. To conserve energy, it will direct attention in the beginning and the end of your commercial, video or landing page… What you can do: Express the most important information at the beginning and repeat it at the end. Create mini segments to provide structure and to tell the reptilian brain that something new is coming and it doesn’t need to tune out. Segments will also help the brain with memory retention… Amy Poehler stars in this Best Buy Commercial. Their value proposition is that they have many experts waiting to help you find the right product for you. In the opening scene, a Best Buy representative asks Amy if he can answer any questions. Amy immediately jumps on the opportunity and takes you through different scenes of her asking many questions on a variety of products. At the end, Amy asks one last question that she probably should not be asking a Best Buy representative. This commercial makes it obvious that no matter what your questions are or how many you may have, Best Buy is there to help… In this commercial, The Dick’s Sporting Goods Foundation for saving youth sports grabs you at the beginning by showing you why you care about the main character; his grandfather just died. There are a few segments within the commercial, demonstrating how the boy is coping with his loss, his coach pushing him to have a positive perspective, and at the end it shows that he feels supported by his team. The ending drives home that fact that kids are looking to sports for support, strength, and belonging and that youth sports deserve to be protected… This is a survival mechanism. Your reptilian brain will register that there is a bear in the distance before other areas of your brain can process that information. This allows for split second reaction if needed… As a result, by showing a visual representation of what you plan to deliver, you are helping the consumer to understand what you are saying without having to involve the other areas of the brain… What you can do: Provide a visual metaphor for what you are offering and why it’s the best. Don’t make it too complicated, or it will require other brain regions. Make it as simple as possible… What drives our decision making is mostly subconscious since it does not involve the cognitive parts of the brain initially. This means that it’s common for consumers to not know why they want certain things, or to be out of touch with what specifically causes them pain… To help bring the pain point into awareness and drive the action you are intending, trigger the emotional pain point of consumer. Triggering positive emotions can also be effective, though the reptilian brain is more drawn to negative emotion… What you can do: Visual images that tell an emotional story can be powerful since story helps the consumer to understand how your information applies to them. Video is even more effective because it engages both the auditory and visual senses, which will enhance attention and memory… In this commercial, Guinness triggers a strong emotional response, stating that we all have differences and handicaps in some way. What unifies us is the decisions we make and implies that beer can unify us as well… Speak the language of the reptilian brain by tapping into what causes your audience pain and presenting your value proposition in the ways that are easily understood by this brain region… SalesBrain suggests that by perfecting the art of reptilian communication, you too will increase sales and improve your ability to positively affect YOUR customers again and again……

[27] https://www.npr.org/templates/story/story.php%3FstoryId%3D104291534
https://www.npr.org/templates/story/story.php%3FstoryId%3D104291534

[28] https://www.parentingforbrain.com/deal-toddler-temper-tantrums/
https://www.parentingforbrain.com/deal-toddler-temper-tantrums/
When this happens, stress hormones are released to course through the toddler’s body and emotions become intense. This hormonal storm causes anguish and emotional pain which amounts to physical pain. The stress hormones also hinder the toddler’s ability to access the rational thinking inside his logical brain. Essentially, the toddler is having a “brain freeze”. Similar things can happen in grownups if they haven’t learned how to handle their own emotions at young age. You hear people say, “I was angry. I don’t know what I was thinking.” Well, in those moments, they were not… But if handled with care, tantrums can become an invaluable life lesson in emotion regulation which has been shown to link to resiliency, social competence, academic success and even popularity. So remember that not only are temper tantrums normal and reasonable, but they are actually desirable in helping toddlers’ emotional development… When a tantrum starts forming, sometimes parents can promptly alleviate it by addressing the issue at hand. For example, if a child doesn’t want dinner, instead of forcing her to eat which will bring on more emotions, parent can ask her to choose to eat the meat or the vegetable first. When questions with simple choices are presented, the child’s thinking brain is activated. By access the child’s higher brain, parents help it stay in control before the emotional part takes over… Using simple questions, distractions or other ways to engage your child’s critical thinking before emotions escalate to the point of losing control can stamp out tantrum before it starts. 2. Do Not Reason … When a toddler is flooded with emotions in a full swing tantrum, the emotional brain has taken control. Her thinking and verbal functions cannot be accessed. Therefore, trying to reason with her or asking her about her feelings is a waste of time. You may end up upsetting her and arousing her emotions even more. 3. Restore Balance … Sometimes, positive words or acknowledgements alone such as “I know”, “you must feel very upset” or “I’m so sorry that you’re hurt” are good enough to let a child feel safe and understood. Parents’ sympathy and attuning to his feelings not only can soothe the child’s emotion, but they can also help built those important pathways between his local and emotional brains. It is important to help a child learn to regulate his emotion. 4. Be Calm And Positive … Any parent can tell you that toddlers mimic what grownups do. That includes their control over emotions. If you get angry and start yelling at the toddler when she throws a tantrum, you are modeling how she should react when things don’t go her way. Instead, by staying calm, you are teaching her how to face difficulties and upsetting situations without losing control of emotions… Another reason for staying calm and positive is that emotions, especially negative ones, are contagious. Being angry or negative will only increase your child’s stress. 5. Do Not Punish. Time-Out Is A Last Resort … Let’s say you are suffering from intense pain. It is so much so that you drop to the ground and writhe. Do you want your loved ones to punish you, walk away from you or lock you in a room by yourself? … Sometimes a tantrum may start as means to get something the toddler wants. But if left undealt with, it can escalate into a strong hormonal storm which a young child is not equipped to cope with by himself. When that happens, it becomes a genuine case of uncontrollable anguish and pain. Punishment, time-out or isolation will teach your child that he cannot trust you to help him or understand his grief when he’s in pain and needs you… If a child learns early on that expressing big feelings will result in parental anger or punishment, he may resort to being compliant or being defiant. Either way, it means the child will not have the opportunity to form proper brain connections to deal with strong emotions. When facing frustrations later in life, he may struggle to be assertive or have angry outbursts… Sometimes if a toddler in distress is met with negative or lack of responses from his parents, he may stop crying. But that doesn’t mean he is not in distress any more. Studies have shown that distressed young children can still have high stress hormonal level inside his body. In some cases, this dissociation between behavioral and physiological responses can lead to emotional or mental health problems later in life… When the dust has settled, when your child has thoroughly de-escalated from the intense emotional state, you can review what happened with her. Teach her what she can say next time she wants something. Teach her how to use words, instead of throwing things, to express her feelings. Narrating what happened can also help her create those important neural connections to manage emotional situations in future… You can even tell her how you feel when she throws a tantrum. It says to her that it is alright to have feelings and feelings can be controlled. You are also teaching her how her action can affect others and what empathy is. 7. Prevent Tantrums … Children are more prone to throw fits when they are hungry or tired. When these physical factors are present, all it takes is a trigger to set things in motion. So, set a schedule of sleep-eat-rest to avoid these tantrum traps… Being bored, stressed, angry, frustrated or disappointed are effective triggers. Prevent this from happening. If you know your child will be upset when not getting something, provide alternatives or distractions in advance. It’s much easier to access their logical thinking to prevent a tantrum than to put out one once it happens… True, there are times when a toddler is behaving like a Little Nero. He wants something and he won’t stop screaming and kicking until he gets it. When a child is in this power struggle mode, he is not flooded with hormones and intense emotions. You can tell by the lack of painful expressions… With this type of tantrums, most parents know they cannot give in or they would be teaching their children to use tantrum to get whatever they want. Some people advocate ignoring the child. But think about it. How would you feel if you want something but your loved one ignores you? You feel more upset! For a toddler, that’s like adding fuel to fire. If she’s old enough to reason, she may understand that it’s not working and stop the tantrum. But if she’s too young or too upset to do so, it can push her right into an emotional storm… Here is an example. If your child is shouting, “I want this!”. You can mirror his expression and shout mildly back to him, “I know you really want this. You really really want this!” What you’re doing here is attuning to his feelings. Emotional attunement tells your child that you get it, you get that he’s upset. When your child feels understood, you will have his attention and the rational thinking that comes with it. It’s half the battle won. The other half is to let him know calmly the reason such as “But I’m sorry. You just cannot have ice cream before dinner.” … You can call me a nerd. After all the researches I’ve done, I’ve come to the conclusion that throwing tantrum is actually a good thing because every tantrum is an opportunity for learning emotional regulation and for brain sculpting… I still remember that one time, when she was having an epic tantrum, I hugged her tight and sat through it with her. When she finally stopped crying, she looked at me in disbelief as if she was thinking “I can’t believe mommy stayed with me during all this!” And then I could feel the look of trust in her eyes. It still puts a smile on my face whenever I think of that… Toddler tantrums are very common. They are the most common childhood behavioral problems reported by parents. A study conducted by University of Wisconsin on 1219 families showed that 87% of children at 18-24 months had displayed tantrums. At 30-36 months, 91% did. The prevalence then decreased to 59% at 42-48 months. So, you’re not alone. Your child is not bad… Parents should know that what works well for easy children may not work for the difficult ones. For example, simple choices and distractions may not be enough to activate those children’s logical brains. Parents may need to do more work to restore their children’s emotional balance and spend more time teaching them how to express their feelings with words. With patience and persistence, even difficult children can learn to integrate their logical and emotional brains and stop using tantrums as outlets…

[29] The Teenager's Brain | Psychology Today
https://www.psychologytoday.com/us/blog/health-matters/201006/the-teenagers-brain

If you are reading this, you are probably a parent, a teacher, or perhaps even a teen yourself. In any case, you feel confounded by unpredictable and volatile behavior, emotions which seem to arise like tornados from out of the blue, and a parade of identities which seem to change as fast as a runway model's wardrobe. What causes all this chaos and confusion? In this article I will summarize some of the new research findings, which shed light on this most vibrant phase of life in the teen brain… Because of all the change that is occurring in the brain, as well as in their social and academic world, teens have a deep need to define themselves, to clarify who they are, and what they stand for. As they are losing their pre-adolescent identity, they are desperate for a new identity. This search can have constructive or destructive aspects to it. Often the new identity is supplied by their peer group, for better or for worse. Because the teen doesn't know clearly what they want or what they can do, they like to try many different things. This helps them discover what works for them, what feels right, and who they are becoming. The parent-teacher role is to allow and encourage safe exploration…

[30] ScienceDirect
https://www.sciencedirect.com/science/article/pii/0165380685902597

[31] How The Brain Works--And How Students Can Respond
https://www.teachthought.com/learning/how-the-brain-works-and-how-students-can-respond/
Three major brain elements help control what information your brain takes in: the reticular activating system, the limbic system, and the transmitter dopamine. Let’s look at how you can help each one work in your favor… You will learn more successfully if you keep the RAS filter open to the flow of information you want to enter your prefrontal cortex. If you build your power to focus your attention on the sensory input that is most valuable and important to attend to at the moment, the important input will make it into your thinking brain. If you feel overwhelmed, your reactive brain will take over. Then, what you experience, focus on, and remember will no longer be in your control. It’s the difference between reflecting on and reacting to your world… After the information coming in through your senses gets through the RAS, it travels to the sensory intake centers of your brain. New information that becomes memory is eventually stored in the sensory cortex areas located in brain lobes that are each specialized to analyze data from one of your five senses. These data must first pass through your brain’s emotional core, the limbic system, where your amygdala and hippocampus evaluate whether this information is useful because it will help you physically survive or bring you pleasure… The amygdala is like a central train-routing station; it’s a system for routing information based on your emotional state. When you experience negative emotions like fear, anxiety, or even boredom, your amygdala’s filter takes up excessive amounts of your brain’s available nutrients and oxygen. This puts your brain into survival mode, which blocks entry of any new information into your prefrontal cortex… For example, suppose your day starts off badly. You overslept, had no time for breakfast, and have too many things to do before school. You’re worried about whether your friends will sit with you at lunch and afraid that the mean kid in your class will say hurtful things to you… It’s not only your body that suffers on this kind of day: Your brain is also stressed. This stress closes off the pathways through the RAS and amygdala that direct information into your thinking brain and memory centers. Unless you restore a positive mood, you won’t learn much on this particular school day. But if you can turn things around to become calm and focused, your amygdala will “decide” to send new information to your prefrontal cortex… Your teachers play a role too. If your teachers set up lessons to include some fun activities so that you feel good during a lesson, your amygdala will add a neurochemical enhancement, like a memory chip, that strengthens the staying power of any information presented in the lesson. People actually remember more of what they hear and read if they are in a positive emotional state when they hear or read it… Next to the amygdala is the hippocampus. Here, your brain links new sensory input to both memories of your past and knowledge already stored in your long-term memory to make new relational memories. These new memories are now ready for processing in your prefrontal cortex… Your prefrontal cortex contains highly developed nerve communication networks that process new information through what are called executive functions, including judgment, analysis, organizing, problem solving, planning, and creativity. The executive function networks can convert short-term relational memories into long-term memories… Repeated stimulation—for example, studying the times tables many times—makes the network stronger, just like muscles become stronger when you exercise them. And that makes the memory stay in your brain. Practice makes permanent… Messages connected to new information travel from neuron to neuron as tiny electrical currents. Like electricity, these messages need wiring to carry them. But there are gaps, called synapses, between the branches that connect nerve cells and there’s no wiring at these gaps. Chemical neurotransmitters like dopamine carry electrical messages across the gap from one neuron to another. This transmission is crucial to your brain’s capacity to process new information… Your brain releases extra dopamine when an experience is enjoyable. As positive emotions cause dopamine to travel to more parts of your brain, additional neurons are activated. Thus a boost in dopamine not only increases your own sense of pleasure, but also increases other neurotransmitters, such as acetylcholine, that enhance alertness, memory, and executive functions in the prefrontal cortex… You’ll boost your learning if you get them into your day. Experiencing pride at accomplishing something is also correlated with higher dopamine. It will increase your learning power if you pursue activities that give you a sense of accomplishment. Think about your personal strengths, such as artistic ability, leadership, helping classmates resolve conflicts, athletic skill, or even qualities like optimism, kindness, and empathy. Use these skills to do projects you want to do—and do them well—and you’ll find you can use your brain power more successfully to make judgments and solve problems…

[32] Simon Sinek: How great leaders inspire action | TED Talk
https://www.ted.com/talks/simon_sinek_how_great_leaders_inspire_action/transcript%3Flanguage%3Den

[33] Black Mirror season 4, “Crocodile” recap: memory is a tool and a w vox-mark ...
https://www.vox.com/culture/2017/12/29/16808458/black-mirror-crocodile-recap-season-4-review
It turns out the ex-boyfriend got sober almost 10 months earlier, and in pursuit of making his amends with those he’s hurt, he’s going to write a letter to the family of the man they accidentally killed… Mia can barely believe what she’s done, but she moves quickly, shoving the body under the bed, ordering room service so as to have a cart at her disposal, and flicking on a pay-per-view porn film, reasoning that the record of the in-room transaction will provide cover for her if she needs an alibi… The investigator’s job is to determine what the claimants are owed based on what happened. She helps uncover the claimant’s memories, not just by asking them to remember, but by triggering two powerful memory aids: the senses of smell and hearing. It’s not a perfect solution, especially since, as she says, memories are unreliable, emotional, and sometimes even malleable. Kiran Sonia Sawar in “Crocodile,” the third episode of Black MIrror’s fourth season Kiran Sonia Sawar in “Crocodile,” the third episode of Black MIrror’s fourth season. Arnaldur Halidorsson/Netflix … The man hit by the pizza truck is a claimant, and viewing his memories sets the inspector on a series of additional interviews of those who may have witnessed the accident, which could help determine how much fault the pizza truck company bears and how much the claimant should receive… At this point in the episode, it’s pretty clear that the inspector is going to end up knocking on Mia’s door. The episode seeds small details about the memory device along the way — in particular, the fact that a year earlier the government had begun requiring citizens to submit to the memory scans. If they don’t, the inspectors have to report them… The inspector insists to everyone she scans that their memories are confidential, unless it’s shown that they’re hurting themselves or other people, which seems to put some people at ease. My immediate reaction to that is a raised eyebrow, but the more I think about it the more I realize it’s just a natural extension of something we already do: give big tech companies the ability to hang onto our personal information — our emails, our text messages, our pictures — via “the cloud,” where all data seems to reside in 2017. Certainly, Google and Apple and AT&T promise they won’t use our data for evil. But they also sell it to advertisers. And we just give it away… It’s not a huge leap from there to government-mandated memory reading, and what’s even more frightening is the admission that memories are not just unreliable, but suggestible. The inspector is able to change the color of a woman’s jacket in someone’s memory just by telling him it was a different color. What’s to keep a sinister agent from implanting or changing memories that are then used in a court of law? A scene from “Crocodile,” the third episode of Black Mirror’s fourth season “Crocodile” was shot in Iceland, and boasts some pretty phenomenal views. Netflix … Musings on the changeability and emotional heft of memory may not be what “Crocodile” intended for me to walk away with; it’s an often-graphic episode about the potential for violence inside us that could be unlocked if our memories threatened our lives. But its title points to a part of the brain that is governed by memory, emotion, and sensation, and as Mia’s emotions war with her rational brain, her plight isn’t hard to sympathize with — and I wonder how much of it is plausibly in our future… 1. She was the “queen of the mommy bloggers.” Then her life fell apart. Where Dooce.com founder Heather Armstrong is today. 2. The making of Amazon Prime, the internet’s most successful and devastating membership program An oral history of the subscription service that changed online shopping forever. 3. The productivity pit: how Slack is ruining work Job software like Teams, Slack, and Workplace were supposed to make us more productive. They haven’t. 4. “I am a woman and I am fast”: what Caster Semenya’s story says about gender and race in sports The constant scrutiny into the runner’s medical history reveals what happens to women who don’t conform to stereotypes. 5. Game of Thrones: Melisandre told Arya she’ll kill someone with green eyes. Is it Cersei? The "green eyes" theory that Arya kills Cersei Lannister, explained…

[34] I feel, therefore I buy: How your users make buying decisions - WiderF ...
https://www.widerfunnel.com/how-users-make-buying-decisions/
Morin goes on to quote neuroscientist Antonio Damasio who said, “We are not thinking machines that feel, we are feeling machines that think.” We are proud of our thinking abilities, but the fact of the matter is, our brains have relied on instinct for millions of years… Note: Neuromarketing is not without its critics who voice ethical concerns akin to those that arose in the days of subliminal messaging. There are concerns that this research could lead to manipulation of consumers. It’s up to the marketing community to use this know-how to benefit the consumer first. With great knowledge, comes great responsibility… Characteristics to note within the intuitive process are fast, nonconscious, automatic, and experience-based decision making. In other words, our intuitive cognitive system is easier, requiring less focus and energy… The level of dominance of each process at a particular time is the key determinant of purchasing decisions. Visitors are more likely to add a product to their cart when the emotional process takes control as they are directed by ‘how it feels’ and not ‘is it worth it.’…Advertising is above all a way to groom the emotional state… We also often have clients who come to us, assuming that their users need more information to make a purchase decision, particularly if their product is technically complex. And yet, time and time again, we test more information against a Control and more information looses… We can’t all be Nike, and Nike’s tactics certainly wouldn’t work for all of us. But when you’re considering your customers’ decision-making, be sure to take into account how you can up the feels…

[35] The emotion centre is the oldest part of the human brain: why is mood ...
http://theconversation.com/the-emotion-centre-is-the-oldest-part-of-the-human-brain-why-is-mood-so-important-63324
Neurotransmitters, such as serotonin and dopamine, are used as chemical messengers to send signals across the network. Brain regions receive these signals, which results in us recognising objects and situations, assigning them an emotional value to guide behaviour and making split-second risk/reward assessments… Researchers are increasingly looking towards newer networks to understand how the brain controls mood. Two particular networks that stand out across numerous studies are the autobiographic memory network and cognitive control network… Many psychological therapies empower the sufferer to wrest control over their own mood. They often train the person to activate the cognitive control network, by challenging negative thoughts for instance, to strengthen it over time. They also seem to disrupt the domination of the autobiographic memory network through techniques such as mindfulness…

[36] http://web.mit.edu/moore/publications/Hui_et_al_2000.pdf
http://web.mit.edu/moore/publications/Hui_et_al_2000.pdf

[37] Common Neurogenetic Diagnosis and Meso-Limbic Manipulation of Hypodopa ...
http://www.eurekaselect.com/node/142096/%3Ftrendmd-shared%3D4

Result: The result is better recovery and relapse prevention, despite DNA antecedents, which could impact the recovery process and relapse. Understanding the commonality of mental illness will transform erroneous labeling based on symptomatology, into a genetic and anatomical etiology. WC: 184… Result: The result is better recovery and relapse prevention, despite DNA antecedents, which could impact the recovery process and relapse. Understanding the commonality of mental illness will transform erroneous labeling based on symptomatology, into a genetic and anatomical etiology. WC: 184…

[38] Study shows direct manipulation of brain can reverse effects of depres ...
http://www.ox.ac.uk/research/study-shows-direct-manipulation-brain-can-reverse-effects-depression

Amazingly, the team were able to reverse this abnormality in the stressed mice’s brain activity. By stimulating a key area of brain tissue which interfaces with other nodes to form a network between the prefrontal cortex and the amygdala, normal communication between the areas of the brain was restored, returning the mice’s brain activity to their pre-stressed state. Their behaviour returned to normal and their stress disappeared… Since this study concurs with what we know about mood disorders, this could certainly open up new avenues for treatment. Exploring these new causal links between stress, the brain’s neural connectivity and depression might make it possible to tweak brain circuitry in order to reverse whole mood disorders – at least in mice, to begin with…


Our Three Brains The Emotional Brain


The limbic system Queensland Brain


Reptilian, limbic brain


Brain Anatomy and Limbic


We Make Decisions With Our Gut (aka Limbic Brain


Limbic System The Human Brain


The Limbic


Help, I Don't Speak Limbic


Triune Brain


The Limbic


limbic brain


Brain /daisy tattoo idea but with the limbic


Hormesis and the limbic brain


How to be More Successful by Using Reptilian and Limbic


limbic system. Cross section of the human brain


Limbic System. Cross Section Of The Human Brain


Customer loyalty, trust and the limbic brain


Human brain limbic


Trauma to the brain – The limbic


Brain Part Limbic


Limbic How Brain


Meet Your Brain


Social neuroscience – the brains


The Power of the Limbic Brain